Solveeit Logo

Question

Question: An electron (mass m) with an initial velocity \(\overset{\rightarrow}{v} = v_{0}\widehat{i}(v_{0} > ...

An electron (mass m) with an initial velocity v=v0i^(v0>0)\overset{\rightarrow}{v} = v_{0}\widehat{i}(v_{0} > 0) is in an electric field E=E0 i^\overset{\rightarrow}{E} = - E_{0}\text{ }\widehat{\text{i}} (E0=E_{0} = constant > 0) It’s de Broglie wavelength at time t is given by

A

λ0(1+eE0tmv0)\frac{\lambda_{0}}{\left( 1 + \frac{eE_{0}t}{mv_{0}} \right)}

B

λ0(1+eE0tmv0)\lambda_{0}\left( 1 + \frac{eE_{0}t}{mv_{0}} \right)

C

λ0\lambda_{0}

D

λ0t\lambda_{0}t

Answer

λ0(1+eE0tmv0)\frac{\lambda_{0}}{\left( 1 + \frac{eE_{0}t}{mv_{0}} \right)}

Explanation

Solution

: Here E=E0ı^;initialvelocityv=v0ı^\overrightarrow{E} = - E_{0}î;initialvelocity\overrightarrow{v} = v_{0}î

Force action on electron due to electric field

F=(e)(E0ı^)=eE0ı^\overrightarrow{F} = ( - e)( - E_{0}î) = eE_{0}î

Acceleration produced in the electron,a=Fm=eE0mı^\overrightarrow{a} = \frac{\overrightarrow{F}}{m} = \frac{eE_{0}}{m}î

Now velocity of electron after time t, vt=v+at\overset{\rightarrow}{v_{t}} = \overset{\rightarrow}{v_{}} + \overset{\rightarrow}{a}t

=(v0+eE0tm)ı^= \left( v_{0} + \frac{eE_{0}t}{m} \right)î

Or vt=v0+eE0tm\left| \overset{\rightarrow}{v_{t}} \right| = v_{0} + \frac{eE_{0}t}{m}

Now λt=hmvt=hm(v0+eE0tm)=hmv0(1+eE0tmv0)\lambda_{t} = \frac{h}{mv_{t}} = \frac{h}{m\left( v_{0} + \frac{eE_{0}t}{m} \right)} = \frac{h}{mv_{0}\left( 1 + \frac{eE_{0}t}{mv_{0}} \right)}

=λ0(1+eE0tmv0)(λ0=hmv0)= \frac{\lambda_{0}}{\left( 1 + \frac{eE_{0}t}{mv_{0}} \right)}\left( \because\lambda_{0} = \frac{h}{mv_{0}} \right)