Solveeit Logo

Question

Physics Question on de broglie hypothesis

An electron (mass m) with an initial velocity
v=v0i^(v0>0)\vec{v}=v_0\hat{i}(v_0>0)
is moving in an electric field
E=E0i^(E0>0)\vec{E}=E_0\hat{i}(E_0>0)
where E0 is constant. If at t = 0 de Broglie wavelength is
λ0=hmv0λ_0=\frac{ℎ}{mv_0}
, then its de Broglie wavelength after time t is given by

A

λ0λ_0

B

λ0(1+eE0tmv0)λ_0\left(1+\frac{eE_0t}{mv_0}\right)

C

λ0tλ_0t

D

λ0(1+eE0tmv0)\frac{λ_0}{\left(1+\frac{eE_0t}{mv_0}\right)}

Answer

λ0(1+eE0tmv0)\frac{λ_0}{\left(1+\frac{eE_0t}{mv_0}\right)}

Explanation

Solution

The correct answer is (D) : λ0(1+eE0tmv0)\frac{λ_0}{\left(1+\frac{eE_0t}{mv_0}\right)}

ax=eE0mi^∴a_x=\frac{eE_0}{m}\hat{i}
v(t)=V0+eE0mt∴v(t)=V_0+\frac{eE_0}{m}t
λ0λ2=mvmV0∴\frac{λ_0}{λ_2}=\frac{mv}{mV_0}
=(1+eE0tmV0)=(1+\frac{eE_0t}{mV_0})
λ2=λ0(1+eE0tmV0)⇒λ_2=\frac{λ_0}{\left(1+\frac{eE_0t}{mV_0}\right)}