Solveeit Logo

Question

Physics Question on Atoms

An electron jumps from the 4th orbit to the 2nd orbit of hydrogen atom. Given the Rydberg’s constant R = 107 m-1. The frequency in Hz of the emitted radiation is (c = 3x108 m/s)

A

916\frac {9}{16} x 1015

B

316\frac {3}{16} x 105

C

316\frac {3}{16} x 1015

D

916\frac {9}{16} x 105

Answer

916\frac {9}{16} x 1015

Explanation

Solution

The frequency of the emitted radiation can be determined using the Rydberg formula for the hydrogen atom:
1λ\frac {1}{λ} = R (1n12\frac {1}{n_1^2} - 1n22\frac {1}{n_2^2})
We know that
ν = cλ\frac {c}{λ}
Substituting the given values into the Rydberg formula:
1λ\frac {1}{λ} = R (122\frac {1}{2^2} - 142\frac {1}{4^2})
Simplifying:
1λ\frac {1}{λ} = R (14\frac {1}{4} - 116\frac {1}{16})
1λ\frac {1}{λ} = R x 316\frac {3}{16}
Now, let's substitute the value of the Rydberg constant, R = 107 m⁻¹:
1λ\frac {1}{λ} = (107 m⁻¹) x 316\frac {3}{16}
1λ\frac {1}{λ} = 3×10716\frac {3 \times 10^7}{16} m⁻¹
Taking the reciprocal of λ:
λ = 163×107\frac {16}{3 \times 10^7} m
Now, let's calculate the frequency ν: ν = c / λ
ν = (3×108m/s)(16/(3×107)m)\frac {(3 \times 10^8 m/s)}{(16 / (3 \times 10^7) m)}
ν = 916\frac {9}{16} x 1015 Hz
Therefore, the frequency of the emitted radiation is (A) 916\frac {9}{16} × 1015 Hz.