Solveeit Logo

Question

Question: An electron jumps from the 4<sup>th</sup> orbit to the 2<sup>nd</sup> orbit of hydrogen atom. Given ...

An electron jumps from the 4th orbit to the 2nd orbit of hydrogen atom. Given the Rydberg's constant R=105cm1R = 10^{5}cm^{- 1}. The frequency in Hz of the emitted radiation will be.

A

316×105\frac{3}{16} \times 10^{5}

B

316×1015\frac{3}{16} \times 10^{15}

C

916×1015\frac{9}{16} \times 10^{15}

D

34×1015\frac{3}{4} \times 10^{15}

Answer

916×1015\frac{9}{16} \times 10^{15}

Explanation

Solution

1λ=R(122142)=3R16λ=163R=163×105cm\frac{1}{\lambda} = R\left( \frac{1}{2^{2}} - \frac{1}{4^{2}} \right) = \frac{3R}{16} \Rightarrow \lambda = \frac{16}{3R} = \frac{16}{3} \times 10^{- 5}cm

Frequency n=cλ=3×1010163×105=916×1015Hzn = \frac{c}{\lambda} = \frac{3 \times 10^{10}}{\frac{16}{3} \times 10^{- 5}} = \frac{9}{16} \times 10^{15}Hz