Solveeit Logo

Question

Physics Question on Electric charges and fields

An electron is moving round the nucleus of a hydrogen atom in a circular orbit of radius r. The Coulomb force F between the two is (wherek=14πε0) \bigg( {where} \, k = \frac{1}{ 4 \pi \varepsilon_0}\bigg)

A

ke2r3r k \frac{ e^2 }{ r^3 } r

B

ke2r3r- k \frac{ e^2 }{ r^3 } r

C

ke2rr k \frac{ e^2 }{ r } r

D

ke2rr - k \frac{ e^2 }{ r } r

Answer

ke2r3r- k \frac{ e^2 }{ r^3 } r

Explanation

Solution

Let charges on an electron and hydrogen nucleus are q1q_1 and q2q_2
The Coulomb's force between them at a distance r is,
F = - 14πε0q1q2r2r\frac{1}{ 4 \pi \varepsilon_0} \frac{ q_1 q_2 }{ r^2} r
Putting, 14πε0=k \frac{1}{ 4 \pi \varepsilon_0} = k (given)
F = - k q1q2r2r \frac{ q_1 q_2 }{ r^2} r
Since, the nucleus of hydrogen atom has one proton, so charge on nucleus is e i e, q2=ealsoq1q_2 = \, e \, also \, q_1 = e for electron.
So, F=e.er2r=ke2r2r F = - \frac{ e.e}{ r^2 } r = - k \frac{e^2 }{ r^2 } r
but r = rr=rr\frac{ r}{ | r |} = \frac{ r}{ r }
Here, F=ke2r2.rr=e2r3.rF = - k \frac{e^2 }{ r^2 }. \frac{ r}{ r } = - \frac{e^2 }{ r^3} . r