Solveeit Logo

Question

Question: An electron in the hydrogen atom jumps excited state \[{\text{n}}\] to the ground state. The wavelen...

An electron in the hydrogen atom jumps excited state n{\text{n}} to the ground state. The wavelength so emitted illuminates a photosensitive material having work function 2.75eV{\text{2}}{\text{.75eV}}. If the stopping potential of the photoelectron is 10V{\text{10V}}, the value of n{\text{n}} is:

Explanation

Solution

This question is based on the concept of photoelectric effect and the concept Bohr’s atom. It also involves the concept of stopping potential & Einstein’s Equations of photoelectric effect, along with the work function of the metal.

Complete step by step Solution:
From Einstein’s photoelectric effect equation.
Given as, Kinetic Energy maximum,
KEmax=hνw{\text{K}}{{\text{E}}_{{\text{max}}}}{{ = h\nu - w}}
Where, KEmax{{K}}{{{E}}_{{{max}}}} is the maximum kinetic energy of the emitted photoelectron
h={{h = }} Plank’s constant
ν={{\nu = }} frequency of the incident photon
w={{w = }} work function of the metal
It is given that work function,
w = 2.75ev{\text{w = 2}}{\text{.75ev}}
It is known that the stopping potential.
Vstop = 10V{{\text{V}}_{{\text{stop}}}}{\text{ = 10V}}
It is known that Vstop{{\text{V}}_{{\text{stop}}}} is the potential which will stop even the fastest moving photoelectron. This implies that Vstop = KEmax{{\text{V}}_{{\text{stop}}}}{\text{ = K}}{{\text{E}}_{{\text{max}}}}.
So, eVstop = KEmax{\text{e}}{{\text{V}}_{{\text{stop}}}}{\text{ = K}}{{\text{E}}_{{\text{max}}}}
Vstop = KEmaxe\Rightarrow {{\text{V}}_{{\text{stop}}}}{\text{ = }}\dfrac{{{\text{K}}{{\text{E}}_{{\text{max}}}}}}{{\text{e}}}
If KEmax{\text{K}}{{\text{E}}_{{\text{max}}}} is in Joules, then KEmaxe\dfrac{{{\text{K}}{{\text{E}}_{{\text{max}}}}}}{{\text{e}}} should be in eV{\text{eV}}.
So , KEmax(eV) = 10{\text{K}}{{\text{E}}_{{\text{max}}}}\left( {{\text{eV}}} \right){\text{ = 10}}
Putting the values in the photoelectric effect equation, 10=hν2.75{{10 = h\nu - 2}}{\text{.75}}
hν=12.75eV{{h\nu = 12}}{\text{.75eV}}
Now, coming to the concept of Bohr atom, we know that hν{{h\nu }} is the energy of the photon emitted when the electron jumps from nth{{\text{n}}^{{\text{th}}}} orbit to the ground state.
Energy difference ΔEn{{\Delta }}{{\text{E}}_{\text{n}}} between nth{{\text{n}}^{{\text{th}}}} excited state and ground state is given by,
ΔE=13.6×(11n2){{\Delta E = 13}}{{.6 \times }}\left( {{{1 - }}\dfrac{{\text{1}}}{{{{\text{n}}^{\text{2}}}}}} \right)
Energy difference ΔEn = 12.75eV{{\Delta }}{{{E}}_{\text{n}}}{\text{ = 12}}{\text{.75eV}}
So, putting the values, we get
12.75 = 13.6×(11n2){\text{12}}{\text{.75 = 13}}{{.6 \times }}\left( {{{1 - }}\dfrac{{{1}}}{{{{{n}}^{{2}}}}}} \right)
12.7513.6 = 1 - 1n2\Rightarrow \dfrac{{{\text{12}}{\text{.75}}}}{{{\text{13}}{\text{.6}}}}{\text{ = 1 - }}\dfrac{{\text{1}}}{{{{\text{n}}^{\text{2}}}}}
0.9375 = 1 - 1n2\Rightarrow {\text{0}}{\text{.9375 = 1 - }}\dfrac{{\text{1}}}{{{{\text{n}}^{\text{2}}}}}
1n2 = 0.0625\Rightarrow \dfrac{{\text{1}}}{{{{\text{n}}^{\text{2}}}}}{\text{ = 0}}{\text{.0625}}
n2 = 10.0625  n = 10.0625 = 4 \Rightarrow {{\text{n}}^{\text{2}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{0}}{\text{.0625}}}} \\\ \\\ \Rightarrow {\text{n = }}\sqrt {\dfrac{{\text{1}}}{{{\text{0}}{\text{.0625}}}}} {\text{ = 4}}

So, the electron drops from the state with, n = 4{\text{n = 4}} to ground state.

Additional Information: Care should be taken in interpreting the units as most of the data is given in terms of eV{\text{eV}}. The conversion of eV{\text{eV}}into Joule or Vice versa should be remembered. Also it's a question having multiple concepts, so all the concepts should be remembered properly.

Note: If kinetic energy maximum has to be found out in eV,{\text{eV,}} then its value in eV{\text{eV}} is equal is always equal to the value of stopping potential in Volts.