Solveeit Logo

Question

Question: An electron in an atom jumps in such a way that its kinetic energy changes from \(x\) to \(\dfrac{x}...

An electron in an atom jumps in such a way that its kinetic energy changes from xx to x9\dfrac{x}{9}. The change in potential energy will be ?

Explanation

Solution

The energy of an electron decreases when it jumps from a higher orbit to a lower orbit in a given atom. Conversely, the energy of an electron increases when it jumps from lower orbit to higher orbit in a given atom.
The change in energy of an electron when it jumps from one orbit to another orbit in a given atom is equal to the difference between its final energy and its initial energy.

Formula used:
The kinetic energy of an electron in an orbit of a given atom is,
K.E=Ze28πε0rK.E = \dfrac{{Z{e^2}}}{{8\pi {\varepsilon _0}r}}
And the potential energy of that electron is,
P.E=Ze24πε0rP.E = \dfrac{{ - Z{e^2}}}{{4\pi {\varepsilon _0}r}}
Where Z=Z = total number of protons in the nucleus of the given atom, e=e = charge of electron, ε0={\varepsilon _0} = permittivity of free space and r=r = distance of electron from the nucleus.

Complete step by step answer:
It is given that the initial kinetic energy (K.E)i{\left( {K.E} \right)_i} of the electron is xx.
(K.E)i=Ze28πε0ri{\left( {K.E} \right)_i} = \,\dfrac{{Z{e^2}}}{{8\pi {\varepsilon _0}{r_i}}}
(K.E)i=x\Rightarrow {\left( {K.E} \right)_i} = x
Where, ri{r_i} is the radius of the initial orbit of an electron.
And the final kinetic energy (K.E)f{\left( {K.E} \right)_f} of the electron is x9\dfrac{x}{9}.
(K.E)f=Zr28πε0rf{\left( {K.E} \right)_f} = \dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}{r_f}}}
(K.E)f=x9\Rightarrow {\left( {K.E} \right)_f} = \dfrac{x}{9}
Where, rf{r_f} is the radius of the final orbit of an electron.
The change in kinetic energy ΔK.E\Delta K.E of the electron is given by
(K.E)f(K.E)i=Zr28πε0rfZr28πε0ri{\left( {K.E} \right)_f} - {\left( {K.E} \right)_i} = \dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}{r_f}}} - \dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}{r_i}}}

Substitute the values of (K.E)f{\left( {K.E} \right)_f} and (K.E)i{\left( {K.E} \right)_i} in the above equation.
x9x=Zr28πε0(1rf1ri)\Rightarrow \dfrac{x}{9} - x = \dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right)
Further simplifying
8x9=Zr28πε0(1rf1ri)\Rightarrow - \dfrac{{8x}}{9} = \dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right)
Or Zr28πε0(1rf1ri)=8x9\dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right) = - \dfrac{{8x}}{9}
Let the initial potential energy of the electron is (P.E)i=Zr24πε0ri{\left( {P.E} \right)_i} = - \dfrac{{Z{r^2}}}{{4\pi {\varepsilon _0}{r_i}}}.
And the final potential energy of the electron is (P.E)f=Ze24πε0rf{\left( {P.E} \right)_f} = - \dfrac{{Z{e^2}}}{{4\pi {\varepsilon _0}{r_f}}}.

The change in potential energy of the electron Δ(P.E)\Delta \left( {P.E} \right) is
Δ(P.E)=(P.E)f(P.E)i\Delta \left( {P.E} \right) = {\left( {P.E} \right)_f} - {\left( {P.E} \right)_i}
Substituting the value of (P.E)f{\left( {P.E} \right)_f} and (P.E)i{\left( {P.E} \right)_i} in the above formula.
Δ(P.E)=Zr24πε0rf(Zr24πε0ri)\Delta \left( {P.E} \right) = - \dfrac{{Z{r^2}}}{{4\pi {\varepsilon _0}{r_f}}} - \left( { - \dfrac{{Z{r^2}}}{{4\pi {\varepsilon _0}{r_i}}}} \right)
Further simplifying
Δ(P.E)=Zr24πε0(1rf1ri)\Delta \left( {P.E} \right) = - \dfrac{{Z{r^2}}}{{4\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right)

Now multiply 22 on the numerator and denominator of the left side of the above equation.
Δ(P.E)=2(Zr28πε0(1rf1ri))\Delta \left( {P.E} \right) = - 2\left( {\dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right)} \right)
But we obtained that Zr28πε0(1rf1ri)=8x9\dfrac{{Z{r^2}}}{{8\pi {\varepsilon _0}}}\left( {\dfrac{1}{{{r_f}}} - \dfrac{1}{{{r_i}}}} \right) = - \dfrac{{8x}}{9}
Δ(P.E)=2(8x9)\Delta \left( {P.E} \right) = - 2\left( { - \dfrac{{8x}}{9}} \right)
Further simplifying
Δ(P.E)=16x9\therefore \Delta \left( {P.E} \right) = \dfrac{{16x}}{9}

Hence, the change in potential energy of the electron is 16x9\dfrac{{16x}}{9}.

Note: Alternative method: The total energy of an electron is equal to the sum of kinetic energy and potential energy.
E=K.E+P.EE = K.E + P.E
Also, the total energy of an electron is equal to the negative of kinetic energy.
E=(K.E)E = - \left( {K.E} \right)
So, K.E+P.E=(K.E)K.E + P.E = - \left( {K.E} \right)
P.E=2(K.E)P.E = - 2\left( {K.E} \right)
Δ(P.E)=2Δ(K.E)\Rightarrow \Delta \left( {P.E} \right) = - 2\Delta \left( {K.E} \right)
It is given that the initial kinetic energy (K.E)i=x{\left( {K.E} \right)_i} = x.
The final kinetic energy (K.E)f=x9{\left( {K.E} \right)_f} = \dfrac{x}{9}.
The change in kinetic energy Δ(K.E)=(K.E)f(K.E)i\Delta \left( {K.E} \right) = {\left( {K.E} \right)_f} - {\left( {K.E} \right)_i}
Substituting the required values in the above formula.
Δ(K.E)=xx9\Delta \left( {K.E} \right) = x - \dfrac{x}{9}
Δ(K.E)=8x9\Rightarrow \Delta \left( {K.E} \right) = - \dfrac{{8x}}{9}
But we know that Δ(P.E)=2Δ(K.E)\Delta \left( {P.E} \right) = - 2\Delta \left( {K.E} \right)
Substitute the value of Δ(K.E)\Delta \left( {K.E} \right) in the above formula.
Δ(P.E)=2(8x9)\Delta \left( {P.E} \right) = - 2\left( { - \dfrac{{8x}}{9}} \right)
On further simplification
Δ(P.E)=16x9\Delta \left( {P.E} \right) = \dfrac{{16x}}{9}
Hence, the change in potential energy of the electron is 16x9\dfrac{{16x}}{9}.