Solveeit Logo

Question

Physics Question on Moving charges and magnetism

An electron having momentum 2.4×1023kgms12.4 \times 10^{-23} \,kg \,ms ^{-1} enters a region of uniform magnetic field of 0.15T0.15 \,T. The field vector makes an angle of 3030^{\circ} with the initial velocity vector of the electron. The radius of the helical path of the electron in the field shall be

A

2mm2\, mm

B

1mm1 \, mm

C

32mm\frac{\sqrt{3}}{2} \, mm

D

0.5mm0.5 \, mm

Answer

0.5mm0.5 \, mm

Explanation

Solution

The radius of the helical path of the electron in the uniform magnetic field is
r=mveBr=\frac{m v_{\perp}}{e B}
=mvsinθeB=\frac{m v \sin \theta}{e B}
=(2.4×1023kgms1)×sin30(1.6×1019C)×(0.15T)=\frac{\left(2.4 \times 10^{-23}\, kg \,m s ^{-1}\right) \times \sin 30^{\circ}}{\left(1.6 \times 10^{-19} C \right) \times(0.15 T )}
=5×104m=5 \times 10^{-4} m
=0.5×103m=0.5 \times 10^{-3} m
=0.5mm=0.5\, mm