Solveeit Logo

Question

Physics Question on Magnetic Force

An electron having charge 1.6×1019C1.6\,\times {{10}^{-19}}\,C and mass 9×1031kg9\times {{10}^{-31}}\,kg is moving with 4×106kg4\times {{10}^{6}}\,kg speed in a magnetic field of 2×1012\times {{10}^{-1}} tesla in a circular orbit. The force acting on an electron and the radius of circular orbit will be:

A

1.28×1014N,1.1×103m1.28\,\times {{10}^{-14}}\,N,\,\,1.1\,\times {{10}^{-3}}\,m

B

1.28×1015N,1.2×1012m1.28\,\times {{10}^{15}}\,N,\,1.2\,\times {{10}^{-12}}m

C

1.28×1013N,1.1×104m1.28\,\times {{10}^{-13}}\,N,\,1.1\,\times {{10}^{-4}}\,m

D

none of these

Answer

1.28×1013N,1.1×104m1.28\,\times {{10}^{-13}}\,N,\,1.1\,\times {{10}^{-4}}\,m

Explanation

Solution

Force produced on an electron is given by F=eυB=1.6×1019×4×106×2×101F=e\upsilon B=1.6\times {{10}^{-19}}\times 4\times {{10}^{6}}\times 2\times {{10}^{-1}} =1.28×1013N=1.28\times {{10}^{-13}}N Since electron is moving in circular orbit So, mυ2r=eυB\frac{m{{\upsilon }^{2}}}{r}=e\upsilon B or r=mυeB=9×1031×4×1061.6×1019×2×101r=\frac{m\upsilon }{eB}=\frac{9\times {{10}^{-31}}\times 4\times {{10}^{6}}}{1.6\times {{10}^{-19}}\times 2\times {{10}^{-1}}} =1.1×104m=1.1\times {{10}^{-4}}m