Solveeit Logo

Question

Physics Question on Magnetic Field

An electron having charge 1.6×10191.6\times {{10}^{-19}} and mass 9×1031kg9\times {{10}^{-31}}kg is moving with 4×106ms14\times {{10}^{6}}m{{s}^{-1}} speed in a magnetic field 2×1012\times {{10}^{-1}} tesla in a circular orbit. The force acting on electron and the radius of the circular orbit will be:

A

1.28×1013N, 1.1×104m1.28\times {{10}^{-13}}N,\text{ }1.1\times {{10}^{-4}}m

B

1.28×1013  N, 1.1 103m1.28\times {{10}^{-13~~}}N,\text{ }1.1\text{ }{{10}^{-3}}m

C

1.28×1014 N, 1.1×103m1.28\times {{10}^{-14~}}N,\text{ }1.1\times {{10}^{-3}}m

D

12.8×1013 N, 1.1×104m12.8\times {{10}^{-13~}}N,\text{ }1.1\times {{10}^{-4}}m

Answer

1.28×1013N, 1.1×104m1.28\times {{10}^{-13}}N,\text{ }1.1\times {{10}^{-4}}m

Explanation

Solution

From the relation F=qvB=1.6×1019×4×106×2×101F=qvB=1.6\times {{10}^{-19}}\times 4\times {{10}^{6}}\times 2\times {{10}^{-1}} =1.28×1013N=1.28\times {{10}^{-13}}N Radius of circular orbit is given by r=mυqB=9×1031×4×1061.6×1019×2×101r=\frac{m\upsilon }{qB}=\frac{9\times {{10}^{-31}}\times 4\times {{10}^{6}}}{1.6\times {{10}^{-19}}\times 2\times {{10}^{-1}}} =1.1×104m=1.1\times {{10}^{-4}}m