Solveeit Logo

Question

Physics Question on Atoms

An electron from various excited states of hydrogen atom emit radiation to come to the ground state. Let λn,λg\lambda_n, \lambda_g be the de Broglie wavelength of the electron in the nthn^{th} state and the ground state respectively. Let Λn\Lambda_n be the wavelength of the emitted photon in the transition from the nthn^{th} state to the ground state. For large n,n, (A,BA, B are constants)

A

ΛnA+Bλn2\Lambda_n \approx A + \frac{B}{\lambda^2_n}

B

ΛnA+Bλn\Lambda_n \approx A + B \lambda_n

C

Λn2A+Bλn2\Lambda_n^2 \approx A + B \lambda_n^2

D

Λn2λ\Lambda_n^2 \approx \lambda

Answer

ΛnA+Bλn2\Lambda_n \approx A + \frac{B}{\lambda^2_n}

Explanation

Solution

Pn=hλn,Pg=hλgP_{n}=\frac{h}{\lambda_{n}}, P_{g}=\frac{h}{\lambda_{g}}
k=P22m=h22mλ2,E=k=h22mλ2k=\frac{P^{2}}{2 m}=\frac{h^{2}}{2 m \lambda^{2}}, E=-k=-\frac{h^{2}}{2 m \lambda^{2}}
En=h22mλn2,Eg=h22mλg2E_{n}=-\frac{h^{2}}{2 m \lambda_{n}^{2}}, E_{g}=-\frac{h^{2}}{2 m \lambda_{g}^{2}}
EnEg=h22m(1λg21λn2)=hcΛnE_{n}-E_{g}=\frac{h^{2}}{2 m}\left(\frac{1}{\lambda_{g}^{2}}-\frac{1}{\lambda_{n}^{2}}\right)=\frac{h c}{\Lambda_{n}}
h22m(λn2λg2λg2λn2)=hcΛn\frac{h^{2}}{2 m}\left(\frac{\lambda_{n}^{2}-\lambda_{g}^{2}}{\lambda_{g}^{2} \lambda_{n}^{2}}\right)=\frac{h c}{\Lambda_{n}}
Λn=2mch(λg2λn2λn2λg2)\Lambda_{n}=\frac{2 m c}{h}\left(\frac{\lambda_{g}^{2} \lambda_{n}^{2}}{\lambda_{n}^{2}-\lambda_{g}^{2}}\right)
Λn=2mcλg2hλn2λn2(1λg2λn2)\Lambda_{n}=\frac{2 m c \lambda_{g}^{2}}{h} \frac{\lambda_{n}^{2}}{\lambda_{n}^{2}\left(1-\frac{\lambda_{g}^{2}}{\lambda_{n}^{2}}\right)}
=2mcλg2h[1λg2λn2]1=\frac{2 m c \lambda_{g}^{2}}{h}\left[1-\frac{\lambda_{g}^{2}}{\lambda_{n}^{2}}\right]^{-1}
=2mcλg2h[1+λg2λn2]=\frac{2 m c \lambda_{g}^{2}}{h}\left[1+\frac{\lambda_{g}^{2}}{\lambda_{n}^{2}}\right]
=2mcλg2h+(2mcλg4h)1λn2=\frac{2 m c \lambda_{g}^{2}}{h}+\left(\frac{2 m c \lambda_{g}^{4}}{h}\right) \frac{1}{\lambda_{n}^{2}}
=A+Bλn2=A+\frac{B}{\lambda_{n}^{2}}
A=2mcλg2h,B=2mcλg4hA= \frac{2 m c \lambda_{g}^{2}}{h}, B=\frac{2 m c \lambda_{g}^{4}}{h}