Solveeit Logo

Question

Physics Question on Moving charges and magnetism

An electron and a proton, both having the same kinetic energy, enter a region of uniform magnetic field, in a plane perpendicular to the field. If their masses are denoted by mem_{e} and mpm_{p} respectively, then the ratio of the radii (electron to proton) of their circular orbits is

A

mpme\sqrt{\frac{m_{p}}{m_{e}}}

B

memp\sqrt{\frac{m_{e}}{m_{p}}}

C

memp\frac{m_{e}}{m_{p}}

D

11

Answer

memp\sqrt{\frac{m_{e}}{m_{p}}}

Explanation

Solution

Radius of circular path in a uniform magnetic field r=mvqBr=\frac{m v}{q B} Kinetic energy of the charged particle
K=12mv2K=\frac{1}{2} m v^{2}
v2=2Kmv^{2}=\frac{2 K}{m}
v=2Km\Rightarrow v=\sqrt{\frac{2 K}{m}}
r=mqB2Km\therefore r=\frac{m}{q B} \sqrt{\frac{2 K}{m}}
r=2KmqBr=\frac{\sqrt{2 K m}}{q B}
For the same value of KK and BB
rmqr \propto \frac{\sqrt{m}}{q}
rerp=memp×qpqe\therefore \frac{r_{e}}{r_{p}}=\frac{\sqrt{m_{e}}}{\sqrt{m_{p}}} \times \frac{q_{p}}{q_{e}}
rerp=memp×ee=memp\frac{r_{e}}{r_{p}}=\frac{\sqrt{m_{e}}}{\sqrt{m_{p}}} \times \frac{e}{e}=\sqrt{\frac{m_{e}}{m_{p}}}