Solveeit Logo

Question

Physics Question on work, energy and power

An electron and a proton are detected in a cosmic ray experiment, the first with kinetic energy 10keV10 \,keV, and the second with 100keV100 \,keV. The ratio of their speeds is (where mem_e and mpm_p are masses of electron and proton respectively)

A

110memp\sqrt{\frac{1}{10} \frac{m_{e}}{m_{p}}}

B

110mpme\sqrt{\frac{1}{10} \frac{m_{p}}{m_{e}}}

C

110memp\\\frac{1}{10} \frac{m_{e}}{m_{p}}

D

110memp\frac{1}{10} \frac{m_{e}}{m_{p}}

Answer

110mpme\sqrt{\frac{1}{10} \frac{m_{p}}{m_{e}}}

Explanation

Solution

Kinetic energy of the electron, Ke=12meve2=10eV(i)K_{e} = \frac{1}{2}m_{e}v^{2}_{e} = 10\,eV\quad\cdots\left(i\right) Kinetic energy of the proton, Kp=12mpvp2=100eV(ii)K_{p} = \frac{1}{2}m_{p}v^{2}_{p} = 100eV\quad\cdots\left(ii\right) Divide (i)\left(i\right) by (ii)\left(ii\right), we get meve2mpvp2=110\frac{m_{e}v^{2}_{e}}{m_{p}v^{2}_{p}} = \frac{1}{10} or ve2vp2=110mpme\frac{v^{2}_{e}}{v^{2}_{p}} = \frac{1}{10} \frac{m_{p}}{m_{e}} or vevp=110mpme\frac{v_{e}}{v_{p}} = \sqrt{\frac{1}{10} \frac{m_{p}}{m_{e}}}