Solveeit Logo

Question

Question: An electromagnetic wave is represented by the electric field \(\overrightarrow{E}={{E}_{0}}\widehat{...

An electromagnetic wave is represented by the electric field E=E0n^sin[ωt+(6y8z)]\overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left[ \omega t+\left( 6y-8z \right) \right]. Taking unit vectors in x, y and z directions to be i,^j^,k^\widehat{i,}\widehat{j},\widehat{k} the directions of propagation s^\widehat{s}is:
A. s^=4j^3k^5 B. s^=3i^4j^5 C. s^=[3j^+4k^5] D. s^=[4k^+3j^5] \begin{aligned} & A.\text{ }\widehat{s}=\dfrac{4\widehat{j}-3\widehat{k}}{5} \\\ & B.\text{ }\widehat{s}=\dfrac{3\widehat{i}-4\widehat{j}}{5} \\\ & C.\text{ }\widehat{s}=\left[ \dfrac{-3\widehat{j}+4\widehat{k}}{5} \right] \\\ & D.\text{ }\widehat{s}=\left[ \dfrac{-4\widehat{k}+3\widehat{j}}{5} \right] \\\ \end{aligned}

Explanation

Solution

First we will compare given formula to actual electric field formula E=E0n^[ωts^k]\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]after that we will convert the unit vectors 6y – 8z into direction vector then after we can find s^\widehat{s}after comparing equation.
Formula used:
E=E0n^[ωts^k]\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]

Complete answer:
It is given that the electric field,
E=E0n^sin[ωt+(6y8z)]....(1)\overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left[ \omega t+\left( 6y-8z \right) \right]....\left( 1 \right)
In order to find direction of propagation s^\widehat{s}we have to compare above equation to actual electric field equation and that equation is
E=E0n^[ωts^k]....(2)\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]....\left( 2 \right)
Where,
E0{{E}_{0}} = initial electric field.
ω = angular velocity
t = time
s^\widehat{s}= propagation vector
k = resultant vector.
Now in order to compare both equations we have to convert equation (1) into direction vector. Now it is given that direction of y is j^\widehat{j} vector and z is represented by k^\widehat{k} vector so that,
6y8z=6j^8k^6y-8z=6\widehat{j}-8\widehat{k}
Now equation (1) can be written as,
E=E0n^sin(ωt+(6j^8k^)) E=E0n^sin(ωt+((6j^+8k^)) E=E0n^sin(ωt(8k^6j^))......(3) \begin{aligned} & \Rightarrow \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t+\left( 6\widehat{j}-8\widehat{k} \right) \right) \\\ & \Rightarrow \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t+(-\left( -6\widehat{j}+8\widehat{k} \right) \right) \\\ & \therefore \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t-\left( 8\widehat{k}-6\widehat{j} \right) \right)......(3) \\\ \end{aligned}
Now comparing equation (2) and (3) we can get
ks^=8k^6j^......(4)k\widehat{s}=8\widehat{k}-6\widehat{j}......\left( 4 \right)
Here k is resultant vector to find k we have to use below formula
k=(xi^)2+(yj^)2+(zk^)2 k=(0)2+(6j^)2+(8k^)2 k=36+64 k=100 k=10......(5) \begin{aligned} & \Rightarrow k=\sqrt{{{\left( x\widehat{i} \right)}^{2}}+{{\left( y\widehat{j} \right)}^{2}}+{{\left( z\widehat{k} \right)}^{2}}} \\\ & \Rightarrow k=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( 6\widehat{j} \right)}^{2}}+{{\left( -8\widehat{k} \right)}^{2}}} \\\ & \Rightarrow k=\sqrt{36+64} \\\ & \Rightarrow k=\sqrt{100} \\\ & \therefore k=10......\left( 5 \right) \\\ \end{aligned}
Now put the value of k in equation (4)
10(s^)=8k^6j^ s^=8k^6j^10 \begin{aligned} & \Rightarrow 10\left( \widehat{s} \right)=8\widehat{k}-6\widehat{j} \\\ & \Rightarrow \widehat{s}=\dfrac{8\widehat{k}-6\widehat{j}}{10} \\\ \end{aligned}
s^=4k^3j^5\therefore \widehat{s}=\dfrac{4\widehat{k}-3\widehat{j}}{5}
Here s^\widehat{s}is direction of propagation of the light.

So hence the correct option is (C) .

Note:
So when we compare both the equations then we have to see the sign of the equation for example in equation (3) (I) will take negative (-ve) sign common so that the ( I) can relate the equation and can match the negative (-ve) sign with the other equation. So the correct option is (C).