Solveeit Logo

Question

Question: An electrical device drawn 2 kW power from ac mains voltage k223 V (rms). The current differs lags i...

An electrical device drawn 2 kW power from ac mains voltage k223 V (rms). The current differs lags in phase by φ=tan1(34)\varphi = \tan^{- 1}\left( - \frac{3}{4} \right)as compared to voltage. The resistance R in the circuit is

A

15Ω\Omega

B

20Ω\Omega

C

25Ω\Omega

D

30Ω\Omega

Answer

20Ω\Omega

Explanation

Solution

: Here, P = 2 kW= 2×10310^{3}W

Vrms=223V,tanφ=34V_{rms} = 223V,\tan\varphi = - \frac{3}{4}

As, P=V2rmsZP = \frac{{V^{2}}_{rms}}{Z}

Z=V2rmsP=(223)22000=497292000=24.86Ω\Rightarrow Z = \frac{{V^{2}}_{rms}}{P} = \frac{(223)^{2}}{2000} = \frac{49729}{2000} = 24.86\Omega

or, Z ≈ 25Ω25\Omega

tanφ=XCXLR=34\tan\varphi = \frac{X_{C} - X_{L}}{R} = - \frac{3}{4}

XCXL=34R.\therefore X_{C} - X_{L} = - \frac{3}{4}R.

As, Z2=R2+(XCXL)2Z^{2} = R^{2} + (X_{C} - X_{L})^{2}

(25)2=R2+(34R)2\therefore(25)^{2} = R^{2} + \left( - \frac{3}{4}R \right)^{2}

625=R2+916R2=25R216625 = R^{2} + \frac{9}{16}R^{2} = \frac{25R^{2}}{16}

R2=625×1625=400R^{2} = \frac{625 \times 16}{25} = 400

R=20ΩR = 20\Omega