Solveeit Logo

Question

Physics Question on Resistance

An electric toaster has resistance of 60Ω60 \, \Omega at room temperature (27C)(27^\circ \text{C}). The toaster is connected to a 220 V supply. If the current flowing through it reaches 2.75 A, the temperature attained by the toaster is around: (if α=2×104/C\alpha = 2 \times 10^{-4} / ^\circ \text{C})

A

1694^\circC

B

1235^\circC

C

694^\circC

D

1667^\circC

Answer

1694^\circC

Explanation

Solution

Calculate Resistance at Operating Temperature:

Given V=220VV = 220 \, \text{V} and I=2.75AI = 2.75 \, \text{A}, use Ohm’s law to find the resistance at the elevated temperature:

R=VI=2202.75=80ΩR = \frac{V}{I} = \frac{220}{2.75} = 80 \, \Omega

Use Temperature Coefficient of Resistance Formula:

The relation between the resistance at room temperature R0R_0 and the resistance at temperature TT is given by:

R=R0(1+αΔT)R = R_0 (1 + \alpha \Delta T)

Substitute R=80ΩR = 80 \, \Omega, R0=60ΩR_0 = 60 \, \Omega, and α=2×104 C1\alpha = 2 \times 10^{-4} \ ^\circ \text{C}^{-1}, where ΔT=T27\Delta T = T - 27:

80=60(1+2×104×(T27))80 = 60 \left(1 + 2 \times 10^{-4} \times (T - 27)\right)

Solve for TT:

- Divide both sides by 60:

8060=1+2×104×(T27)\frac{80}{60} = 1 + 2 \times 10^{-4} \times (T - 27)

- Simplify and isolate TT:

431=2×104×(T27)\frac{4}{3} - 1 = 2 \times 10^{-4} \times (T - 27)

13=2×104×(T27)\frac{1}{3} = 2 \times 10^{-4} \times (T - 27)

T27=13×2×104=1667T - 27 = \frac{1}{3 \times 2 \times 10^{-4}} = 1667

T=1667+27=1694CT = 1667 + 27 = 1694^\circ \text{C}