Solveeit Logo

Question

Question: An electric kettle used to prepare tea takes \(2\) minutes to boil \(4\) cups of water ( \(1\) cup c...

An electric kettle used to prepare tea takes 22 minutes to boil 44 cups of water ( 11 cup contains 200cc{{200cc}} of water) if the room temperature is 25C{25^ \circ }{{C}}
(a) If the cost of power conception is Re. 1.001.00 per unit (1  unit=1000  watthour)\left( {{{1}}\;{{unit = 1000}}\;{{watt - hour}}} \right) calculate the cost of boiling 44 cups of water.
(b) What will be the corresponding cost if the room temperature drop to 5C  ?{5^ \circ }{{C}}\;{{?}}

Explanation

Solution

This question is based on the principle of calorimetry which tells us total energy given by the hot body is always equal to the total energy taken by the cold body. Also the concept of electrical power & corresponding concept of units consumed is involved.

Formula used:
(1)  \left( 1 \right)\; ΔQ=msΔT{{\Delta Q = ms\Delta T}}
Where, ΔQ={{\Delta Q = }} amount of heat given/ heat taken in J.{{J}}{{.}}
m={{m = }} mass of the body in kgkg
s=s = specific heat capacity KJ/Kg    oC{{KJ/Kg}}\;{\;^{{o}}}{{C}}
(2)\left( 2 \right) 1  unit  =1KWh  =3.6×106J{{1}}\;{{unit}}\;{{ = 1KWh}}\;{{ = 3}}{{.6 \times 1}}{{{0}}^{{6}}}{{J}}
(3)\left( 3 \right) Specific heat capacity of water =  4.2  J/g  oC{{ = }}\;{{4}}{{.2}}\;{{J/g}}{\;^{{o}}}{{C}}

Complete step by step solution:
(a) Given 11 cup of tea contains 200cc{{200cc}} of water, so, volume of the water boiled in 44 cups
=  4×200cc{{ = }}\;{{4 \times 200cc}}
=800cc{{ = 800cc}}
Total mass of the water to be boiled == Total volume of the water be boiled ×\times Density of water since Density of water is 1gm/cm3{{1gm/c}}{{{m}}^{{3}}}; therefore mass of water to be boiled =  800cm3×1gm/cm3=800g{{ = }}\;{{800c}}{{{m}}^{{3}}}{{ \times 1gm/c}}{{{m}}^{{3}}}{{ = 800g}}
As 100g{{100g}} =  1KG{{ = }}\;{{1KG}}
Mass of water to be boiled is equals to 8001000=0.8kg\dfrac{{800}}{{1000}} = 0.8{{kg}}
It is also given that the initial temperature of water is 25C{25^ \circ }{{C}}.
The temperature of water =   = \; Boiling point of water =100C = {100^ \circ }{{C}}
\therefore Rise in temperature of water =  100oC25oC  =75oC{{ = }}\;{{10}}{{{0}}^{{o}}}{{C - 2}}{{{5}}^{{o}}}{{C}}\;{{ = 7}}{{{5}}^{{o}}}{{C}}
We know that the specific heat capacity of water
S=1  cal/goC  =4.2J/goC{{S = 1}}\;{{cal/}}{{{g}}^{{o}}}{{C}}\;{{ = 4}}{{.2J/}}{{{g}}^{{o}}}{{C}}
S=4200J/KgoC\Rightarrow {{S = 4200J/K}}{{{g}}^{{o}}}{{C}}
Now, ΔQ(heat  required)  =msΔT{{\Delta Q}}\left( {{{heat}}\;{{required}}} \right)\;{{ = ms\Delta T}}
m={{m = }} mass of water in kg
s={{s = }} specific heat of water
ΔT={{\Delta T = }} change in temperature
Putting the values
ΔQ  =0.8×4200×75  =252000J{{\Delta Q}}\;{{ = 0}}{{.8 \times 4200 \times 75}}\;{{ = 252000J}}
We know that 1  unit  =  10000Whr  =3.6×106J{{1}}\;{{unit}}\;{{ = }}\;{{10000Whr}}\;{{ = 3}}{{.6 \times 1}}{{{0}}^{{6}}}{{J}}
Now, heat required in terms of units ==
H=2520003.6×106=0.07  unitsH = \dfrac{{{{252000}}}}{{{{3}}{{.6 \times 1}}{{{0}}^{{6}}}}}{{ = 0}}{{.07}}\;{{units}}
As given in the question Rs 11 is 11 unit, so the total cost to heat 44 cups of water from
25C0.07Rs=7  paise{25^ \circ }{{C}} \to {{0}}{{.07Rs = 7}}\;{{paise}}

(b) Here we are given that the initial temperature of the water is 5C.{5^ \circ }{{C}}{{.}}
And we know that final temperature of water =100C = {100^ \circ }{{C}}
(Boiling point of water)
\therefore Rise in temperature of water =1005  =  95C = {100^ \circ } - {5^ \circ }\; = \;{95^ \circ }{{C}}
Now, ΔQ  (heat  required)  =    msΔT{{\Delta Q}}\;\left( {{{heat}}\;{{required}}} \right)\;{{ = }}\;\;{{ms\Delta T}}
m=  mass  of  water s  =  specific  heat  of  water ΔT  =  change  in  temperature  {{m = }}\;{{mass}}\;{{of}}\;{{water}} \\\ {{s}}\;{{ = }}\;{{specific}}\;{{heat}}\;{{of}}\;{{water}} \\\ {{\Delta T}}\;{{ = }}\;{{change}}\;{{in}}\;{{temperature}} \\\
Putting the values,
ΔQ  =0.8×4200×95  =    319,200J{{\Delta Q}}\;{{ = 0}}{{.8 \times 4200 \times 95}}\;{{ = }}\;\;{{319,200J}}
Now, heat required in terms of units ==
3192003.6×106  =0.0886J\dfrac{{{{319200}}}}{{{{3}}{{.6 \times 1}}{{{0}}^{{6}}}}}\;{{ = 0}}{{.0886J}}
0.09  units\approx 0.09\;{{units}}
So the cost of boiling 44 cups of water if the room temperature drops to
5C  0.09×  1{5^ \circ }{{C}}\; \to {{0}}{{.09}} \times \;1
50.09{5^ \circ } \to 0.09
5C9paise{{{5}}^ \circ }{{C}} \to {{9 paise}}

Additional Information:
In this question the specific heat capacity of water, density of water are to be remembered. This data is not given in the question cannot be solved. Also the boiling point of water is 100C{100^ \circ }{{C}} is to be remembered.

Note: The specific heat capacity of water is defined as the amount of heat required for unit mass of water to raise its temperature by 1C.{1^ \circ }{{C}}{{.}} Its value =  4.2J/goC.{{ = }}\;{{4}}{{.2J/}}{{{g}}^{{o}}}{{C}}.