Solveeit Logo

Question

Physics Question on Electric Flux Density

An electric field, E=2i^+6j^+8k^6\vec{E} = \frac{2\hat{i} + 6\hat{j} + 8\hat{k}}{\sqrt{6}} passes through the surface of 4m24 \, \text{m}^2 area having unit vector n^=2i^+j^+k^6\hat{n} = \frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}. The electric flux for that surface is _________ V m\text{V m}.

Answer

Electric flux is:
ϕ=EA.\phi = \vec{E} \cdot \vec{A}.
The area vector is:
A=An^=42i^+j^+k^6.\vec{A} = A \hat{n} = 4 \cdot \frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}.
Dot product:
ϕ=(2i^+6j^+8k^6)(8i^+4j^+4k^6).\phi = \left( \frac{2\hat{i} + 6\hat{j} + 8\hat{k}}{\sqrt{6}} \right) \cdot \left( \frac{8\hat{i} + 4\hat{j} + 4\hat{k}}{\sqrt{6}} \right).
ϕ=46(28+64+84).\phi = \frac{4}{6} (2 \cdot 8 + 6 \cdot 4 + 8 \cdot 4).
ϕ=46(16+24+32)=4672=12V m.\phi = \frac{4}{6} (16 + 24 + 32) = \frac{4}{6} \cdot 72 = 12 \, \text{V m}.
Final Answer: 12V m12 \, \text{V m}.

Explanation

Solution

Electric flux is:
ϕ=EA.\phi = \vec{E} \cdot \vec{A}.
The area vector is:
A=An^=42i^+j^+k^6.\vec{A} = A \hat{n} = 4 \cdot \frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}.
Dot product:
ϕ=(2i^+6j^+8k^6)(8i^+4j^+4k^6).\phi = \left( \frac{2\hat{i} + 6\hat{j} + 8\hat{k}}{\sqrt{6}} \right) \cdot \left( \frac{8\hat{i} + 4\hat{j} + 4\hat{k}}{\sqrt{6}} \right).
ϕ=46(28+64+84).\phi = \frac{4}{6} (2 \cdot 8 + 6 \cdot 4 + 8 \cdot 4).
ϕ=46(16+24+32)=4672=12V m.\phi = \frac{4}{6} (16 + 24 + 32) = \frac{4}{6} \cdot 72 = 12 \, \text{V m}.
Final Answer: 12V m12 \, \text{V m}.