Solveeit Logo

Question

Physics Question on Gauss Law

An electric field E=(2xi^)N C1\vec{E} = (2x \hat{i}) \, \text{N C}^{-1} exists in space. A cube of side 2m2 \, \text{m} is placed in the space as per the figure given below. The electric flux through the cube is __________ N m2/C\text{N m}^2/\text{C}.

Answer

The electric flux is given by Gauss's Law:
Φ=EdA.\Phi = \oint \vec{E} \cdot d\vec{A}.
The field E=2xi^\vec{E} = 2x \hat{i} varies with xx.
For the cube, only the left (x=0x = 0) and right (x=2x = 2) faces contribute: Φ=ErightAEleftA.\Phi = E_\text{right} A - E_\text{left} A.
Substituting A=4m2A = 4 \, \mathrm{m}^2, Eright=2(2)=4E_\text{right} = 2(2) = 4, and Eleft=2(0)=0E_\text{left} = 2(0) = 0:
Φ=4404=16Nm2/C.\Phi = 4 \cdot 4 - 0 \cdot 4 = 16 \, \mathrm{Nm}^2/\mathrm{C}.

Explanation

Solution

The electric flux is given by Gauss's Law:
Φ=EdA.\Phi = \oint \vec{E} \cdot d\vec{A}.
The field E=2xi^\vec{E} = 2x \hat{i} varies with xx.
For the cube, only the left (x=0x = 0) and right (x=2x = 2) faces contribute: Φ=ErightAEleftA.\Phi = E_\text{right} A - E_\text{left} A.
Substituting A=4m2A = 4 \, \mathrm{m}^2, Eright=2(2)=4E_\text{right} = 2(2) = 4, and Eleft=2(0)=0E_\text{left} = 2(0) = 0:
Φ=4404=16Nm2/C.\Phi = 4 \cdot 4 - 0 \cdot 4 = 16 \, \mathrm{Nm}^2/\mathrm{C}.