Solveeit Logo

Question

Question: An electric dipole with charges 2µC and separation 20 cm is placed closed to an infinitely charge no...

An electric dipole with charges 2µC and separation 20 cm is placed closed to an infinitely charge non-conducting sheet with surface charge density 100 cm². Find the torque acting on the dipole if the dipole makes an angle 30º with the formal to the sheet?

A

12ϵ0\frac{12}{\epsilon_0} x 10-5 nm

B

2ϵ0\frac{2}{\epsilon_0} x 10-5 nm

C

4ϵ0\frac{4}{\epsilon_0} x 10-5 Nm

D

1ϵ0\frac{1}{\epsilon_0} x 10-5 Nm

Answer

1ϵ0\frac{1}{\epsilon_0} x 10-5 Nm

Explanation

Solution

Solution

  1. The dipole moment is

    p=qd=(2×106C)(0.2m)=4×107Cm.p = q\,d = (2\times10^{-6}\,C)(0.2\,m)= 4\times10^{-7}\,C\cdot m.

  2. The electric field due to an infinite, uniformly charged sheet is

    E=σ2ϵ0.E=\frac{\sigma}{2\epsilon_0}\,.

    Assuming the given surface charge density is σ=100C/m2\sigma=100\,C/m^2 (so that units and answer options become consistent), we have

    E=1002ϵ0=50ϵ0.E=\frac{100}{2\epsilon_0} = \frac{50}{\epsilon_0}\,.

  3. The torque on a dipole in a uniform electric field is

    τ=pEsinθ.\tau = pE\sin\theta\,.

    For θ=30\theta=30^\circ (with sin30=12\sin30^\circ=\frac12),

    τ=4×107×50ϵ0×12=4×502×107ϵ0=100ϵ0×107=1ϵ0×105Nm.\tau= 4\times10^{-7}\times \frac{50}{\epsilon_0}\times\frac{1}{2}=\frac{4\times 50}{2}\times\frac{10^{-7}}{\epsilon_0}=\frac{100}{\epsilon_0}\times10^{-7}=\frac{1}{\epsilon_0}\times10^{-5}\,Nm.

Explanation (minimal):

  • Compute dipole moment: p=2×106×0.2=4×107Cmp=2\times10^{-6}\times0.2=4\times10^{-7}\,Cm.
  • For an infinite sheet, E=σ/(2ϵ0)=50/ϵ0E=\sigma/(2\epsilon_0)=50/\epsilon_0 (taking σ=100C/m2\sigma=100\,C/m^2).
  • Use torque formula: τ=pEsin30=4×107×(50/ϵ0)×(1/2)=(1/ϵ0)×105Nm\tau=pE\sin30^\circ=4\times10^{-7}\times(50/\epsilon_0)\times(1/2)= (1/\epsilon_0)\times10^{-5}\,Nm.