Solveeit Logo

Question

Physics Question on Electric Dipole

An electric dipole is placed along the x-axis at the origin 0. A point P is at a distance of 20 cm from this origin such that OP makes an angle /3\text{/3} with the x-axis. If the electric field at P makes an angle θ\theta with the x-axis, the value of θ\theta would be

A

π3\frac{\pi }{3}

B

π3+tan1(32)\frac{\pi }{3}+{{\tan }^{-1}}\left( \frac{\sqrt{3}}{2} \right)

C

2π3\frac{2\pi }{3}

D

tan1(32){{\tan }^{-1}}\left( \frac{\sqrt{3}}{2} \right)

Answer

π3+tan1(32)\frac{\pi }{3}+{{\tan }^{-1}}\left( \frac{\sqrt{3}}{2} \right)

Explanation

Solution

Component of electric field at point P parallel to XX- axis, EX=14πε02(pcosπ/3)r3{{E}_{X}}=\frac{1}{4\pi {{\varepsilon }_{0}}}\cdot \frac{2(p\cos \pi /3)}{{{r}^{3}}} 14πε0Pr3\frac{1}{4\pi {{\varepsilon }_{0}}}\cdot \frac{P}{{{r}^{3}}} Component of electric field of point PP perpendicular to XX- axis, EY=14πε0psinπ/3r3{{E}_{Y}}=\frac{1}{4\pi {{\varepsilon }_{0}}}\cdot \frac{p\sin \pi /3}{{{r}^{3}}} =14πε03p2r3=\frac{1}{4\pi {{\varepsilon }_{0}}}\cdot \frac{\sqrt{3}p}{2{{r}^{3}}} \therefore tanθ=EYEX=32\tan \theta =\frac{{{E}_{Y}}}{{{E}_{X}}}=\frac{\sqrt{3}}{2} \therefore θ=tan1(32)\theta ={{\tan }^{-1}}\left( \frac{\sqrt{3}}{2} \right)