Solveeit Logo

Question

Question: An electric dipole is made up of two equal and opposite charges of 2 × $10^{-6}$C at a distance of 3...

An electric dipole is made up of two equal and opposite charges of 2 × 10610^{-6}C at a distance of 3cm. If this is kept in an electric field of 2 × 10510^5 N/C, then the maximum torque acting on the dipole is PP × 10310^{-3} Nm. Find the value of PP.

Answer

12

Explanation

Solution

The maximum torque (τmax\tau_{max}) acting on an electric dipole in an electric field (E) is given by the formula:

τmax=pE\tau_{max} = pE

where pp is the electric dipole moment.

The electric dipole moment (pp) is calculated as the product of the magnitude of one of the charges (qq) and the distance (ll) between the two charges:

p=qlp = ql

Given values:

  • Charge, q=2×106q = 2 \times 10^{-6} C
  • Distance between charges, l=3l = 3 cm =3×102= 3 \times 10^{-2} m
  • Electric field, E=2×105E = 2 \times 10^5 N/C

First, calculate the electric dipole moment (pp):

p=(2×106 C)×(3×102 m)p = (2 \times 10^{-6} \text{ C}) \times (3 \times 10^{-2} \text{ m})

p=(2×3)×(106×102) Cmp = (2 \times 3) \times (10^{-6} \times 10^{-2}) \text{ C}\cdot\text{m}

p=6×108 Cmp = 6 \times 10^{-8} \text{ C}\cdot\text{m}

Next, calculate the maximum torque (τmax\tau_{max}):

τmax=pE\tau_{max} = pE

τmax=(6×108 Cm)×(2×105 N/C)\tau_{max} = (6 \times 10^{-8} \text{ C}\cdot\text{m}) \times (2 \times 10^5 \text{ N/C})

τmax=(6×2)×(108×105) Nm\tau_{max} = (6 \times 2) \times (10^{-8} \times 10^5) \text{ N}\cdot\text{m}

τmax=12×103 Nm\tau_{max} = 12 \times 10^{-3} \text{ N}\cdot\text{m}

The problem states that the maximum torque is P×103P \times 10^{-3} Nm.

By comparing our calculated value with the given form:

P×103 Nm=12×103 NmP \times 10^{-3} \text{ Nm} = 12 \times 10^{-3} \text{ Nm}

Therefore, P=12P = 12.