Solveeit Logo

Question

Physics Question on Electric charges and fields

An electric dipole has a fixed dipole moment p\vec{p}, which makes angles θ\theta with respect to x-axis. When subjected to an electric field E1=Ei^\vec{E}_1 = E \hat{i}, it experiences a torque T1=τk^\vec{T}_1 = \tau \hat{k}. When subjected to another electric field E2=3E1j^\vec{E}_2 = \sqrt{3 E_1} \hat{j} it experiences a torque T2=T1\vec{T}_2 = - \vec{T}_1. The angle θ\theta is

A

3030^{\circ}

B

4545^{\circ}

C

6060^{\circ}

D

9090^{\circ}

Answer

6060^{\circ}

Explanation

Solution

p=pcosθi^+psinθj^\vec{p} = p \cos \theta \hat{i} + p \sin \theta \hat{j}
E1=Ei^\vec{E}_1 = E \hat{i}
T1=p×E1\vec{T}_1 = \vec{p} \times \vec{E}_1
=(pcosθi^+psinθj^)×E(i^)= (p \cos \theta \hat{i} + p \sin \theta \hat{j} ) \times E (\hat{i})
τk^=pEsinθ(k^)\tau \hat{k} = p E \sin \theta (- \hat{k}) ......(i)
E2=3E1j^\vec{E}_2 = \sqrt{3} E_1 \hat{j}
T2=(pcosθi^+psinθj^)×3E1j^\vec{T}_2 = (p\cos \theta \hat{i} + p \sin \theta \hat{j} ) \times \sqrt{3} E_1 \hat{j}
τk^=3pE1cosθk^- \tau \hat{k} = \sqrt{3} p E_1 \cos \theta \hat{k} ....(ii)
From (i) and (ii)
pEsinθ=3pEcosθp E \sin \theta = \sqrt{3} pE \cos \theta
tanθ=3\tan \theta = \sqrt{3}
θ=60\theta = 60^{\circ}