Solveeit Logo

Question

Question: An electric dipole has a fixed dipole moment \(\overrightarrow p \), which makes angle \(\theta \) w...

An electric dipole has a fixed dipole moment p\overrightarrow p , which makes angle θ\theta with respect to x-axis. When subjected to an electric fieldE1=Ei^{\overrightarrow E _1} = E\widehat i, it experiences a torque T1=τk^\overrightarrow {{T_1}} = \tau \widehat k. When subjected to another electric field E2=3E1j^\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j, it experiences torque T2=T1\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} . The angle θ\theta is:
(a) 90^\circ
(b) 30^\circ
(c) 45^\circ
(d) 60^\circ

Explanation

Solution

Hint: Use the given Electric field vectors and resultant Torque to find the components of dipole moment. This can then be used to find the angle it makes with x-axis.

Formula used:
Torque:
T=p×E\overrightarrow T = \overrightarrow p \times \overrightarrow E …… (1)
where,
p\overrightarrow p is the dipole moment.
E\overrightarrow E is the Electric field.
Angle made by vector with x-axis:
θ=tan1pypx\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}} …… (2)
where,
py{p_y} is the y component of the vector p\overrightarrow p
px{p_x} is the x component of the vector p\overrightarrow p

Step-by-step answer:
Given:
1. Electric field (1) E1=Ei^{\overrightarrow E _1} = E\widehat i
2. Torque (1) T1=τk^\overrightarrow {{T_1}} = \tau \widehat k
3. Electric field (2) E2=3E1j^\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j
4. Torque (2) T2=T1\overrightarrow {{T_2}} = - \overrightarrow {{T_1}}

To find: The angle p\overrightarrow p makes with x-axis.

Step 1 of 5:
Let p\overrightarrow p be the following:
p=pxi^+pyj^\overrightarrow p = {p_x}\widehat i + {p_y}\widehat j

Step 2 of 5:
Use eq (1) to find Torque (1):
τk^=(pxi^+pyj^)×(Ei^)\tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (E\widehat i)
τk^=(pxi^)×(Ei^)+(pyj^)×(Ei^) τk^=pyE(j^×i^) τk^=pyEk^  \tau \widehat k = ({p_x}\widehat i) \times (E\widehat i) + ({p_y}\widehat j) \times (E\widehat i) \\\ \tau \widehat k = {p_y}E(\widehat j \times \widehat i) \\\ \tau \widehat k = - {p_y}E\widehat k \\\
Compare the magnitudes of unit vectors on LHS and RHS:
τ=pyE\tau = - {p_y}E
Rearrange to find py{p_y}:
py=τE{p_y} = - \dfrac{\tau }{E} ……(3)

Step 3 of 5:
Find Electric field (2):
E2=3E1j^\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j
E2=3Ej^\overrightarrow {{E_2}} = \sqrt 3 E\widehat j
Find Torque (2):
T2=T1 T2=τk^  \overrightarrow {{T_2}} = - \overrightarrow {{T_1}} \\\ \overrightarrow {{T_2}} = - \tau \widehat k \\\

Step 4 of 5:
Use eq (1) to find Torque (2):
τk^=(pxi^+pyj^)×(3Ej^)- \tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (\sqrt 3 E\widehat j)
\-τk^=(pxi^)×(3Ej^)+(pyj^)×(3Ej^) \-τk^=3pxE(i^×j^) τk^=3pxEk^  \- \tau \widehat k = ({p_x}\widehat i) \times (\sqrt 3 E\widehat j) + ({p_y}\widehat j) \times (\sqrt 3 E\widehat j) \\\ \- \tau \widehat k = \sqrt 3 {p_x}E(\widehat i \times \widehat j) \\\ \tau \widehat k = - \sqrt 3 {p_x}E\widehat k \\\
Compare the magnitudes of unit vectors on LHS and RHS:
τ=3pxE\tau = - \sqrt 3 {p_x}E
Rearrange to find px{p_x}:
px=τ3E{p_x} = - \dfrac{\tau }{{\sqrt 3 E}} …… (4)

Step 5 of 5:
Use eq (2) to find the angle θ\theta made by p\overrightarrow p with the x-axis:
θ=tan1pypx\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}
py{p_y} and px{p_x}are given in eq (4) and (3) respectively:

θ=tan1(τE)(τ3E) θ=tan13 θ=60  \theta = {\tan ^{ - 1}}\dfrac{{(\dfrac{{ - \tau }}{E})}}{{(\dfrac{{ - \tau }}{{\sqrt 3 E}})}} \\\ \theta = {\tan ^{ - 1}}\sqrt 3 \\\ \theta = 60^\circ \\\

Correct Answer:
The angle θ\theta is: (d) 60^\circ

Additional Information: In dipole moment we approximate charge to be separated by very small and finite distance which lead us to calculate torque and force acting on the dipole altogether. Otherwise, we would have to use coulomb's law for each individual charge of dipole and superposition of fields produced by them.

Note: In questions like these, Assume a general expression for p\overrightarrow p (dipole moment). Obtain the expressions for T\overrightarrow T . Compare the magnitudes of unit vectors to find the x and y components of p\overrightarrow p . This can be used to find the angle θ\theta .