Solveeit Logo

Question

Question: An elastic cord of constant K and length L is hung from point A having a massless lock at the other ...

An elastic cord of constant K and length L is hung from point A having a massless lock at the other end. A smooth ring of mass M falls from point A, the maximum elongation of cord is

A

MgK(1+1+2KLMg)1/2\frac{Mg}{K}\left( 1 + \frac{1 + 2KL}{Mg} \right)^{1/2}

B

MgK(1(12KLMg)1/2)\frac{Mg}{K}\left( 1 - \left( 1 - \frac{2KL}{Mg} \right)^{1/2} \right)

C

MgLK\frac{MgL}{K}

D

MgK(1+(1+2KLMg)1/2)\frac{Mg}{K}\left( 1 + \left( 1 + \frac{2KL}{Mg} \right)^{1/2} \right)

Answer

MgK(1+(1+2KLMg)1/2)\frac{Mg}{K}\left( 1 + \left( 1 + \frac{2KL}{Mg} \right)^{1/2} \right)

Explanation

Solution

Let the extension in cord be KL. Using conservation of energy, we get

Mg(L + δL) = 12\frac{1}{2}K(δL)2

K(δL) + 2 – 2 MgL – 2MgδL = 0

or K(δL)2 – 2 MgδL – 2MgL = 0

or δL = 2Mg±4M2g2+4K×2MgL2K\frac{2Mg \pm \sqrt{4M^{2}g^{2} + 4K \times 2MgL}}{2K} (By solving the quadratic equation)

i.e., δL = MgK(1+1+2KLMg)\frac{Mg}{K}\left( 1 + \sqrt{1 + \frac{2KL}{Mg}} \right)