Solveeit Logo

Question

Physics Question on Electric charges and fields

An early model for an atom considered it to have a positively charged point nucleus of charge ZeZe, surrounded by a uniform density of negative charge upto a radius RR. The atom as a whole is neutral. The electric field at a distance rr from the nucleus is (r<R)(r < R)

A

Ze4πε0[1r2rR3]\frac{Ze}{4\pi\varepsilon_{0}}\left[\frac{1}{r^{2}}-\frac{r}{R^{3}}\right]

B

Ze4πε0[1r3rR2]\frac{Ze}{4\pi\varepsilon_{0}}\left[\frac{1}{r^{3}}-\frac{r}{R^{2}}\right]

C

Ze4πε0[rR31r2]\frac{Ze}{4\pi\varepsilon_{0}}\left[\frac{r}{R^{3}}-\frac{1}{r^{2}}\right]

D

Ze4πε0[rR3+1r2]\frac{Ze}{4\pi\varepsilon_{0}}\left[\frac{r}{R^{3}}+\frac{1}{r^{2}}\right]

Answer

Ze4πε0[1r2rR3]\frac{Ze}{4\pi\varepsilon_{0}}\left[\frac{1}{r^{2}}-\frac{r}{R^{3}}\right]

Explanation

Solution

Charge on nucleus is =+Ze= + Ze Total negative charge=Ze = - Ze (\because atoms is electrical neutral) Negative charge density, ρ=chargevolume=Ze43πR3\rho=\frac{charge}{volume}=\frac{-Ze}{\frac{4}{3}\pi R^{3}} i.e., ρ=34ZeπR3...(i)\rho=-\frac{3}{4} \frac{Ze}{\pi R^{3}}\,...\left(i\right) Consider a Gaussian surface with radius rr. By Gausss theorem, ϕ=E(r)×4πr2=qε0...(ii)\phi=E\left(r\right)\times4\pi r^{2}=\frac{q}{\varepsilon_{0}}\,...\left(ii\right) Charge enclosed by Gaussian surface q=Ze+4πr33ρ=ZeZer3R3q'=Ze+\frac{4\pi r^{3}}{3} \rho=Ze-Ze \frac{r^{3}}{R^{3}} (Using (i) From (ii)(ii), E(r)=q4πε0r2E\left(r\right)=\frac{q'}{4\pi\varepsilon_{0}r^{2}} =ZeZer3R34πε0r2=\frac{Ze-Ze \frac{r^{3}}{R^{3}}}{4\pi\varepsilon_{0}r^{2}} =Ze4πε0[1r2rR3]=\frac{Ze}{4\pi\varepsilon_{0}}\left[\frac{1}{r^{2}}-\frac{r}{R^{3}}\right]