Solveeit Logo

Question

Question: An early model for an atom considered it to have a positively charged point nucleus of charge Ze, su...

An early model for an atom considered it to have a positively charged point nucleus of charge Ze, surrounded by a uniform density of negative charge upto a radius R. The atom as a whole is neutral. The electric field at a distance r from the nucleus is (r>R)

A

Ze4πε0[1r2rR3]\frac{Ze}{4\pi\varepsilon_{0}}\left\lbrack \frac{1}{r^{2}} - \frac{r}{R^{3}} \right\rbrack

B

Ze4πε0[1r3rR2]\frac{Ze}{4\pi\varepsilon_{0}}\left\lbrack \frac{1}{r^{3}} - \frac{r}{R^{2}} \right\rbrack

C

Ze4πε0[rR31r2]\frac{Ze}{4\pi\varepsilon_{0}}\left\lbrack \frac{r}{R^{3}} - \frac{1}{r^{2}} \right\rbrack

D

Ze4πε0[rR3+1r2]\frac{Ze}{4\pi\varepsilon_{0}}\left\lbrack \frac{r}{R^{3}} + \frac{1}{r^{2}} \right\rbrack

Answer

Ze4πε0[1r2rR3]\frac{Ze}{4\pi\varepsilon_{0}}\left\lbrack \frac{1}{r^{2}} - \frac{r}{R^{3}} \right\rbrack

Explanation

Solution

: Charge on nucleus is, = + Ze

Total negative charge = - Ze

(\becauseatoms is electrical neutral

Negative charge density, ρ=chargevolume\rho = \frac{ch\arg e}{volume}

Ze43πR3\frac{- Ze}{\frac{4}{3}\pi R^{3}}

i.e. ρ=34Ze4πR3\rho = - \frac{3}{4}\frac{Ze}{4\pi R^{3}} …(i)

Consider a Gaussian surface with radius r. By Gauss’s theorem

φ=E(r)×4πr2=qε0\varphi = E(r) \times 4\pi r^{2} = \frac{q}{\varepsilon_{0}} …(ii)

Charge enclosed by Gaussian surface

q=Ze+4πr33ρ=ZeZer3R3q' = Ze + \frac{4\pi r^{3}}{3}\rho = Ze - Ze\frac{r^{3}}{R^{3}} (Using (i) From (ii)

E(r)=q4πε0r2=ZeZer3R34πε0r2=Ze4πε0[1r2rR3]E(r) = \frac{q'}{4\pi\varepsilon_{0}r^{2}} = \frac{Ze - Ze\frac{r^{3}}{R^{3}}}{4\pi\varepsilon_{0}r^{2}} = \frac{Ze}{4\pi\varepsilon_{0}}\left\lbrack \frac{1}{r^{2}} - \frac{r}{R^{3}} \right\rbrack