Solveeit Logo

Question

Physics Question on Motion in a straight line

An automobile travelling at 50 km/h, can be stopped at a distance of 40 m by applying brakes. If the same automobile is travelling at 90 km/h, all other conditions remaining same and assuming no skidding, the minimum stopping distance in metres is:

A

72

B

92.5

C

102.6

D

129.6

Answer

129.6

Explanation

Solution

When automobile stops, final velocity is zero. From equation of motion
v2=u22as{{v}^{2}}={{u}^{2}}-2as where uu is initial velocity, a is acceleration and s is displacement.
Given, u=50km/h,v=0,s=40mu=50\,km/h,\,v=0,s=40\,m
\therefore a=u22s=(50×518)22×40,a=\frac{{{u}^{2}}}{2s}=\frac{{{\left( 50\times \frac{5}{18} \right)}^{2}}}{2\times 40},
when u=90km/h,a=(50×518)22×40,v=0u'=90\,km/h,\,a=\frac{{{\left( 50\times \frac{5}{18} \right)}^{2}}}{2\times 40},v=0
s=u22as=\frac{u{{'}^{2}}}{2a}
\Rightarrow s=(90×518)2×2×402×(50×518)2s=\frac{{{\left( 90\times \frac{5}{18} \right)}^{2}}\times 2\times 40}{2\times {{\left( 50\times \frac{5}{18} \right)}^{2}}}
In metre s=129.6ms=129.6\,m