Solveeit Logo

Question

Question: An auto travelling along a straight road increases its speed from 30.0 m s<sup>-1</sup> to 50.0 m s<...

An auto travelling along a straight road increases its speed from 30.0 m s-1 to 50.0 m s-1 in a distance of 180 m. If the acceleration is constant, how much time elapses while the auto moves this distance?

A

6.0 s

B

4.5 s

C

3.6 s

D

7.0 s

Answer

4.5 s

Explanation

Solution

Lat a be constant accelerations of auto

Here, u 30 ms130 \mathrm {~ms} ^ { - 1 } v = 50 ms150 \mathrm {~ms} ^ { - 1 } , S = 180 m

As V2u2=2aS\mathrm { V } ^ { 2 } - \mathrm { u } ^ { 2 } = 2 \mathrm { aS }

(50)2(30)2=2×a×180( 50 ) ^ { 2 } - ( 30 ) ^ { 2 } = 2 \times \mathrm { a } \times 180

(2500)-(900) = 2×a×1802 \times a \times 180

a=16002×180=409 ms2\mathrm { a } = \frac { 1600 } { 2 \times 180 } = \frac { 40 } { 9 } \mathrm {~ms} ^ { - 2 }

As S=ut+12at2S = u t + \frac { 1 } { 2 } a t ^ { 2 }

180=30×t+12×409×t2180 = 30 \times \mathrm { t } + \frac { 1 } { 2 } \times \frac { 40 } { 9 } \times \mathrm { t } ^ { 2 }

180=30t+209t2180 = 30 t + \frac { 20 } { 9 } t ^ { 2 }

18=3t+29t218 = 3 \mathrm { t } + \frac { 2 } { 9 } \mathrm { t } ^ { 2 }

29t2+3t18=0\frac { 2 } { 9 } t ^ { 2 } + 3 t - 18 = 0

2t2+27t162=02 t ^ { 2 } + 27 t - 162 = 0

Solving this quadratic by quadratic formula, we get

r=27±(27)24(2)(162)4r = \frac { - 27 \pm \sqrt { ( 27 ) ^ { 2 } - 4 ( 2 ) ( - 162 ) } } { 4 } =27±454=4.5 s,18 s= \frac { - 27 \pm 45 } { 4 } = 4.5 \mathrm {~s} , - 18 \mathrm {~s}

t can’t be negative

t=4.5 s\therefore \mathrm { t } = 4.5 \mathrm {~s}