Solveeit Logo

Question

Physics Question on Gravitation

An astronaut takes a ball of mass mm from earth to space. He throws the ball into a circular orbit about earth at an altitude of 318.5 km. From earth's surface to the orbit, the change in total mechanical energy of the ball is xGMem21Rex \frac{GM_em}{21R_e}. The value of xx is
(take Re=6370kmR_e = 6370 \, \text{km}):

A

11

B

9

C

12

D

10

Answer

11

Explanation

Solution

Step 1: Data and formula for mechanical energy The total mechanical energy at the Earth’s surface is:

T.Ei=GMemRe,T.E_i = -\frac{GM_e m}{R_e},

where:

  • Re=6370kmR_e = 6370 \, \text{km} (radius of Earth),
  • GG is the gravitational constant,
  • MeM_e is the mass of Earth.

The altitude of the orbit is given as h=318.5kmh = 318.5 \, \text{km}. Approximate:

hRe20.h \approx \frac{R_e}{20}.

The total mechanical energy in the orbit is:

T.Ef=GMem2(Re+h).T.E_f = -\frac{GM_e m}{2(R_e + h)}.

Step 2: Substitute hRe20h \approx \frac{R_e}{20}

T.Ef=GMem2(Re+Re20)=GMem2(21Re20).T.E_f = -\frac{GM_e m}{2 \left( R_e + \frac{R_e}{20} \right)} = -\frac{GM_e m}{2 \left( \frac{21R_e}{20} \right)}.

Simplify:

T.Ef=10GMem21Re.T.E_f = -\frac{10GM_e m}{21R_e}.

Step 3: Change in mechanical energy The change in total mechanical energy is:

ΔE=T.EfT.Ei.\Delta E = T.E_f - T.E_i.

Substitute:

ΔE=(10GMem21Re)(GMemRe).\Delta E = \left( -\frac{10GM_e m}{21R_e} \right) - \left( -\frac{GM_e m}{R_e} \right).

Simplify:

ΔE=10GMem21Re+21GMem21Re.\Delta E = -\frac{10GM_e m}{21R_e} + \frac{21GM_e m}{21R_e}.

ΔE=11GMem21Re.\Delta E = \frac{11GM_e m}{21R_e}.

Thus, x=11x = 11.

Final Answer: x=11x = 11.