Question
Physics Question on Gravitation
An asteroid of mass m is approaching earth, initially at a distance of 10Re, with speed vi. It hits the earth with a speed vf (Re and Me are radius and mass of earth), then
vf2=vi2+MeR2Gm(1−101)
vf2=vi2+Re2GMe(1+101)
vf2=vi2+MeR2GMe(1−101)
vf2=vi2+Re2Gm(1−101)
vf2=vi2+MeR2GMe(1−101)
Solution
Applying law of conservation of energy for asteroid at a distance 10Re and at earth's surface, \hspace20mm K_i + U_i = K_f + U_f \hspace20mm ...(i) Now, \hspace20mm K_i = \frac{1}{2}mv^2_i and Ui=10ReGMem \hspace10mm K_f = \frac{1}{2}mv^2_f and Uf=ReGMem Substituting these values in E (i), we get \hspace10mm \frac{1}{2}mv_i^2 -\frac{GM_e m}{10R_e} =\frac{1}{2}mv^2_f - \frac{GM_e m}{R_e} \Rightarrow\hspace20mm \frac{1}{2}mv_f^2 =\frac{1}{2}mv^2_i +\frac{GM_e m}{R_e}-\frac{GM_e m}{10R_e} \Rightarrow\hspace25mm v_f^2 =v^2_i +\frac{2GM_e}{R_e}-\frac{2GM_e}{10R_e} \therefore\hspace25mm v_f^2 =v^2_i +\frac{2GM_e}{R_e}\bigg(1-\frac{1}{10}\bigg)