Solveeit Logo

Question

Physics Question on Gravitation

An asteroid of mass m is approaching earth, initially at a distance of 10ReR_e, with speed viv_i. It hits the earth with a speed vfv_f (ReR_e and MeM_e are radius and mass of earth), then

A

vf2=vi2+2GmMeR(1110)v^2_f = v^2_i + \frac{2Gm}{M_e R}\bigg(1 - \frac{1}{10}\bigg)

B

vf2=vi2+2GMeRe(1+110)v^2_f = v^2_i + \frac{2GM_e}{R_e}\bigg(1 +\frac{1}{10}\bigg)

C

vf2=vi2+2GMeMeR(1110)v^2_f = v^2_i + \frac{2GM_e}{M_e R}\bigg(1 - \frac{1}{10}\bigg)

D

vf2=vi2+2GmRe(1110)v^2_f = v^2_i + \frac{2Gm}{R_e}\bigg(1 - \frac{1}{10}\bigg)

Answer

vf2=vi2+2GMeMeR(1110)v^2_f = v^2_i + \frac{2GM_e}{M_e R}\bigg(1 - \frac{1}{10}\bigg)

Explanation

Solution

Applying law of conservation of energy for asteroid at a distance 10Re10 R_e and at earth's surface, \hspace20mm K_i + U_i = K_f + U_f \hspace20mm ...(i) Now, \hspace20mm K_i = \frac{1}{2}mv^2_i and Ui=GMem10ReU_i = \frac{GM_e m}{10 R_e} \hspace10mm K_f = \frac{1}{2}mv^2_f and Uf=GMemReU_f = \frac{GM_e m}{R_e} Substituting these values in E (i), we get \hspace10mm \frac{1}{2}mv_i^2 -\frac{GM_e m}{10R_e} =\frac{1}{2}mv^2_f - \frac{GM_e m}{R_e} \Rightarrow\hspace20mm \frac{1}{2}mv_f^2 =\frac{1}{2}mv^2_i +\frac{GM_e m}{R_e}-\frac{GM_e m}{10R_e} \Rightarrow\hspace25mm v_f^2 =v^2_i +\frac{2GM_e}{R_e}-\frac{2GM_e}{10R_e} \therefore\hspace25mm v_f^2 =v^2_i +\frac{2GM_e}{R_e}\bigg(1-\frac{1}{10}\bigg)