Solveeit Logo

Question

Question: An artificial satellite revolves around the earth at a height of \[1000{\text{ km}}\]. The radius of...

An artificial satellite revolves around the earth at a height of 1000 km1000{\text{ km}}. The radius of earth is 6.38×  103  km6.38 \times \;\,{10^3}\;{\text{km}}. Mass of the earth =6×1024kg = 6 \times {10^{24}}{\text{kg}}; G=6.67×1011 Nm2kg - 2G = 6.67 \times {10^{11}}{\text{ N}}{{\text{m}}^2}{\text{k}}{{\text{g}}^{{\text{ - 2}}}}. Find the orbital speed and period of revolution of the satellite.
(A) 7364 ms1,6297s7364{\text{ m}}{{\text{s}}^{ - 1}},6297{\text{s}}
(B) 1064 ms1,6297s1064{\text{ m}}{{\text{s}}^{ - 1}},6297{\text{s}}
(C) 9364 ms1,9297s9364{\text{ m}}{{\text{s}}^{ - 1}},9297{\text{s}}
(D) 8364 ms1,7297s8364{\text{ m}}{{\text{s}}^{ - 1}},7297{\text{s}}

Explanation

Solution

When a satellite is thrown into the orbit of the earth, it experiences gravitational pull. And when the centrifugal force is balanced out by the gravitational force, it starts to revolve around the earth in a certain orbit.
The velocity with which a satellite revolves around the earth is known as orbital velocity. And Time taken to complete one revolution around the earth by satellite is known as the Time period.

Complete step by step answer:
Write the expression of the orbital speed v0{v_0} for an artificial satellite,
v0=GMR+h{v_0} = \sqrt {\dfrac{{GM}}{{R + h}}}
Here, MM is the mass of earth, GG is the gravitational constant, RR is the radius of the earth and hh is the height of the satellite from the earth.
Substitute 6.38×  103  km6.38 \times \;\,{10^3}\;{\text{km}} forRR, 6.67×1011 Nm2kg - 26.67 \times {10^{11}}{\text{ N}}{{\text{m}}^2}{\text{k}}{{\text{g}}^{{\text{ - 2}}}} forGG, 6×1024kg6 \times {10^{24}}{\text{kg}} for MM and 1000 km1000{\text{ km}} forhh.

{v_0} = \sqrt {\dfrac{{(6.67 \times {{10}^{11}}{\text{ N}}{{\text{m}}^2}{\text{k}}{{\text{g}}^{{\text{ - 2}}}})(6 \times {{10}^{24}}{\text{kg)}}}}{{(6.38 \times \;\,{{10}^3}\;{\text{km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right) + 1000{\text{ km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right){\text{)}}}}} \\\ = 7364\;{\text{m}}{{\text{s}}^{ - 1}} \\\ \ $$ Write the expression for the Period of revolution $$T$$ of satellite. $$T = \dfrac{{2\pi (R + h)}}{{{v_0}}}$$ Substitute $$6.38 \times \;\,{10^3}\;{\text{km}}$$ for$$R$$,$$1000{\text{ km}}$$ for $$h$$ and $$7364\;{\text{m}}{{\text{s}}^{ - 1}}$$ for $${v_0}$$ $$\ T = \dfrac{{2\pi (6.38 \times \;\,{{10}^3}\;{\text{km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right) + 1000{\text{ km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right))}}{{7364\;{\text{m}}{{\text{s}}^{ - 1}}}} \\\ = 6297{\text{ s}} \\\ \ $$ Therefore,$$7364\;{\text{m}}{{\text{s}}^{ - 1}}$$, $$6297{\text{ s}}$$are orbital speed and period of revolution of the satellite respectively. **So, the correct answer is “Option A”.** **Note:** The expression for the orbital velocity is used to calculate the orbital velocity of the satellite and the expression for the Time period is used to calculate the period of revolution. Standardize the units of the values used in the expressions of Orbital velocity and time period.