Question
Question: An arc AC of a circle subtends a right angle at the center O. The point B divides the arc in the rat...
An arc AC of a circle subtends a right angle at the center O. The point B divides the arc in the ratio 1:2. If
OA=a and OB=b, then the vector OC in terms of a&b, is
A. 3a−2b
B. −3a+2b
C. 2a−3b
D. −2a+3b
Solution
Hint: In this problem, we need to apply the vector law of addition in triangle OBD to obtain the vector OC. The vector law of addition says that, if two vectors are represented as two sides of the triangle having order of direction and magnitude, then the third side of the triangle represents the resultant of the two vectors.
Complete step by step solution:
Given:
An arc AC of a circle subtends a right angle at the center O and, the point B divides the arc in the ratio 1:2.
Since, the point B divides the arc AC in a ratio of 1:2, it can be written as follows:
,,,,,,\overrightarrow {OD} + \overrightarrow {DB} = \overrightarrow {OB} \\
\Rightarrow \overrightarrow {OD} + \overrightarrow {OE} = \overrightarrow {OB} ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,\left( {\overrightarrow {OE} = \overrightarrow {DB} } \right) \\
\Rightarrow \overrightarrow {OB} = \dfrac{{\overrightarrow {OC} }}{2} + \dfrac{{\sqrt 3 }}{2}\overrightarrow {OA} \\
\Rightarrow 2\overrightarrow {OB} = \overrightarrow {OC} + \sqrt 3 \overrightarrow {OA} \\
\Rightarrow 2\overrightarrow b = \overrightarrow {OC} + \sqrt 3 \overrightarrow a ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,\left( {\overrightarrow {OA} = \overrightarrow a ,,{\text{and}},,\overrightarrow {OB} = \overrightarrow b } \right) \\
\Rightarrow \overrightarrow {OC} = 2\overrightarrow b - \sqrt 3 \overrightarrow a \\