Solveeit Logo

Question

Question: An ant travels along a long rod with a constant velocity \(\bar{u}\) relative to the rod starting fr...

An ant travels along a long rod with a constant velocity uˉ\bar{u} relative to the rod starting from the origin. The rod is kept initially along the positive x-axis. At t = 0, the rod also starts rotating with an angular velocity ω\omega (anticlockwise) in x-y plane about origin. Then

A

The position of the ant at any time t is rˉ=ut[cosωti^+sinωtj^]\bar{r} = ut[\cos\omega t\,\hat{i} + \sin\omega t\,\hat{j}].

B

The speed of the ant at any time t is u1+ω2t2.u\sqrt{1+\omega^2t^2}.

C

The magnitude of the tangential acceleration of the ant at any time t is ω2tu1+ω2t2\frac{\omega^2 t u}{\sqrt{1+\omega^2t^2}}.

D

The speed of the ant at any time t is 1+2ω2t2  u.\sqrt{1+2\omega^2t^2}\;u.

Answer

The position of the ant at any time t is rˉ=ut[cosωti^+sinωtj^]\bar{r} = ut[\cos\omega t\,\hat{i} + \sin\omega t\,\hat{j}].; The speed of the ant at any time t is u1+ω2t2.u\sqrt{1+\omega^2t^2}.; The magnitude of the tangential acceleration of the ant at any time t is ω2tu1+ω2t2\frac{\omega^2 t u}{\sqrt{1+\omega^2t^2}}.

Explanation

Solution

1. Position vector
Since the ant moves a distance utut along the rod which itself has rotated by angle ωt\omega t,

rˉ(t)=ut(cosωti^+sinωtj^).\bar r(t)=ut\bigl(\cos\omega t\,\hat i+\sin\omega t\,\hat j\bigr).

2. Speed
Differentiate rˉ(t)\bar r(t) to get velocity vˉ\bar v. One finds

vˉ2=u2(1+ω2t2)vˉ=u1+ω2t2.|\bar v|^2 = u^2(1+\omega^2t^2) \quad\Longrightarrow\quad |\bar v|=u\sqrt{1+\omega^2t^2}.

3. Tangential acceleration
The tangential component is dvˉ/dtd|\bar v|/dt:

atan=ddt(u1+ω2t2)=ω2tu1+ω2t2.a_{\rm tan} =\frac{d}{dt}\bigl(u\sqrt{1+\omega^2t^2}\bigr) =\frac{\omega^2t\,u}{\sqrt{1+\omega^2t^2}}.