Solveeit Logo

Question

Physics Question on rotational motion

An annular disc of mass M, inner radius a and outer radius b is placed on a horizontal surface with a coefficient of friction μ, as shown in the figure. At some time, an impulse J0 x^\hat{x} is applied at a height of h at the center of the disc. If h=hm, then the disc rolls without slipping along the x-axis, which of the following statement is/are correct?

annular disc of mass M

A

For h=hm the initial angular velocity doesn't depend on the inner radius a.

B

For μ≠0 & a\rightarrowb, hm=b

C

For μ=0 & h=0 the wheel always slides without rolling

D

For μ≠0 & a\rightarrow0, hm=b2\frac{b}{2}

Answer

For h=hm the initial angular velocity doesn't depend on the inner radius a.

Explanation

Solution

the disc rolls without slipping
Angular impulse about CM=ΔLCM=\Delta L
J0h=IcmωJ_0\,h=I_{cm}\omega
ω=J0hIcm\omega=\frac{J_0h}{I_{cm}}
Linear impulse = ΔP\Delta P
J0=ΔPJ_0=\Delta P
J0=MV0J_0=MV-0
V=J0MV=\frac{J_0}{M}
As disc is pure rolling,
V=ωbV=\omega b
ω=Vb\omega=\frac{V}{b}
ω=J0Mb\omega=\frac{J_0}{Mb}
ω\omega is independent of radius a…… (Ans.1)
Now, If aba\rightarrow b, then the annular disc is a ring of radius b
Icm=Mb2I_{cm}=Mb^2
ω=J0hMb2\omega=\frac{J_0h}{Mb^2}
J0Mb=J0hMb2\frac{J_0}{Mb}=\frac{J_0h}{Mb^2}
h=bh=b
hm=b\therefore h_m=b…….(Ans.2)
the disc rolls without slipping
if h=0 and μ\mu=0,
as h=0 ω=J0hMb2\,\,\,\,\omega=\frac{J_0h}{Mb^2} = 0
but V=J0MV=\frac{J_0}{M}………(Ans.3)
If a\rightarrow0then annular disc is disc of radius b
Icm=Mb22I_{cm}=\frac{Mb^2}{2}
ω=J0h×2Mb2;h=b2;hm=b2\omega=\frac{J_0h\times2}{Mb^2};h=\frac{b}{2};h_m=\frac{b}{2}……..(Ans.4)