Solveeit Logo

Question

Physics Question on communication systems

An amplitude modulated signal is given by V(t)=10[1+0.3cos(2.2×104)]sin(5.5×105t)V(t) = 10[1 + 0.3 \cos(2.2 \times 10^4)] \sin(5.5 \times 10^5t). Here t is in seconds. The sideband frequencies (in kHz) are, [Given π=22/7\pi = 22/7]

A

1785 and 1715

B

892.5 and 857.5

C

89.25 and 85.75

D

178.5 smf 171.5

Answer

89.25 and 85.75

Explanation

Solution

V(t)=10+32[2cosAsinB]V\left(t\right) = 10 + \frac{3}{2} \left[2\cos A \sin B\right]
=10+32[sin(A+B)sin(AB)]=10+ \frac{3}{2} \left[\sin\left(A+B\right)-\sin\left(A-B\right)\right]
=10+32[sin(57.2×104t)sin(52.8×104t)]=10 + \frac{3}{2} \left[\sin\left(57.2 \times10^{4} t\right) -\sin\left(52.8 \times10^{4} t\right)\right]
ω1=57.2×104=2πf1\omega_{1} = 57.2 \times10^{4} = 2\pi f_{1}
f1=57.2×1042×(227)=9.1×104f_{1} = \frac{57.2 \times10^{4}}{2 \times\left(\frac{22}{7}\right) } = 9.1 \times10^{4}
91KHz\simeq 91KHz
f2=52.8×1042×(227)f_{2} = \frac{52.8 \times10^{4}}{2 \times\left(\frac{22}{7}\right)}
84KHz\simeq 84 KHz
Side band frequency are
f1=fcfw=52.8×1042π85.00kHzf_{1} = f_{c} -f_{w} = \frac{52.8\times10^{4}}{2\pi} \approx 85.00 kHz
f2=fc+fw=57.2×1042π90.00kHzf_{2} =f_{c} +f_{w} = \frac{57.2 \times10^{4}}{2\pi} \approx 90.00 kHz