Question
Question: An alternating voltage is given by \(e = {e_1}\sin \omega t + {e_2}\cos \omega t\). Then the root me...
An alternating voltage is given by e=e1sinωt+e2cosωt. Then the root means the square value of voltage.
(A) e12+e22
(B) e1e2
(C) 2e1e2
(D) 2e12+e22
Solution
The root mean square value of any physical quantity is given as
Let A is the any physical quantity
So, Arms=Aˉ2
or Arms2=0∫Tdt0∫TA2dt (for complete circle)
Complete step by step solution:
Given that alternating voltage
e=e1sinωt+e2cosωt
So, for complete circle cone cycle of AC
erms=eˉ2
erms2=eˉ20∫Tdt0∫Te2dt
erms2=0∫Tdt0∫T(e1sinωt+e2cosωt)2dt
erms2=T1[e120∫T(sin2ωt)dt+e1e20∫T(sin2ωt)dt+e220∫T(cos2ωt)dt]
erms2=T1[e120∫T(21−cos2ωt)dt+e1e2[2ω−cos2ωt]0T+e220∫T(21+cos2ωt)dt]
erms2=T1[2e12(t−2ωsin2ωt)0T−2ωe1e2(cos2ωT−cos0)+2e22(t+2ωsin2ωt)0T]
erms2=T1[2e12[T−2ω1(sin2ωT−sin0)]−2ωe1e2(cos2ωT−1)+2e22[T+2ω1(sin2ωT−sin0)]]
∵T=ω2π
erms2=T1[2e12[ω2π−2ω1(sin2ωω2π−0)−2ωe1e2(cos2ωω2π−1)+2e22[ω2π+2ω1(sin2ωω2π)]]]
erms2=T1[2e12[ω2π−0]−2ωe1e2(1−1)+2e22(ω2π−0)]
(sinnπ=0) where n=0,1,2,....
(cos4π=1)
erms2=2πω[2e12×ω2π+2e22×ω2π]
erms2=2e12+e22
erms=2e12+e22
Hence option D is correct.
Note: We know that the mean or expectation value of sin 0 & cos 0 is 0 and sin20 & cos20 is 21.
So, we can directly calculate the root mean square value of alternating voltage.
erms2=<(e1sinωt+e2cosωt)2>
=e12<sin2ωt>+2e1e2<sinωt><cosωt>+e22<cos2ωt>
erms2=2e12+0+2e22
erms2=2e12+e22
erms=2e12+e22