Solveeit Logo

Question

Question: An alternating voltage is given by \(e = {e_1}\sin \omega t + {e_2}\cos \omega t\). Then the root me...

An alternating voltage is given by e=e1sinωt+e2cosωte = {e_1}\sin \omega t + {e_2}\cos \omega t. Then the root means the square value of voltage.
(A) e12+e22\sqrt {e_1^2 + e_2^2}
(B) e1e2\sqrt {{e_1}{e_2}}
(C) e1e22\sqrt {\dfrac{{{e_1}{e_2}}}{2}}
(D) e12+e222\sqrt {\dfrac{{e_1^2 + e_2^2}}{2}}

Explanation

Solution

The root mean square value of any physical quantity is given as
Let A is the any physical quantity
So, Arms=Aˉ2{A_{rms}} = \sqrt {{{\bar A}^2}}
or Arms2=0TA2dt0TdtA_{rms}^2 = \dfrac{{\int\limits_0^T {{A^2}dt} }}{{\int\limits_0^T {dt} }} (for complete circle)

Complete step by step solution:
Given that alternating voltage
e=e1sinωt+e2cosωte = {e_1}\sin \omega t + {e_2}\cos \omega t
So, for complete circle cone cycle of AC
erms=eˉ2{e_{rms}} = \sqrt {{{\bar e}^2}}
erms2=eˉ20Te2dt0Tdte_{rms}^2 = {\bar e^2}\dfrac{{\int\limits_0^T {{e^2}dt} }}{{\int\limits_0^T {dt} }}
erms2=0T(e1sinωt+e2cosωt)2dt0Tdte_{rms}^2 = \dfrac{{\int\limits_0^T {{{({e_1}\sin \omega t + {e_2}\cos \omega t)}^2}dt} }}{{\int\limits_0^T {dt} }}
erms2=1T[e120T(sin2ωt)dt+e1e20T(sin2ωt)dt+e220T(cos2ωt)dt]e_{rms}^2 = \dfrac{1}{T}\left[ {e_1^2\int\limits_0^T {({{\sin }^2}\omega t)dt + {e_1}{e_2}\int\limits_0^T {(\sin 2\omega t)dt} } + e_2^2\int\limits_0^T {({{\cos }^2}\omega t)dt} } \right]
erms2=1T[e120T(1cos2ωt2)dt+e1e2[cos2ωt2ω]0T+e220T(1+cos2ωt2)dt]e_{rms}^2 = \dfrac{1}{T}\left[ {e_1^2\int\limits_0^T {\left( {\dfrac{{1 - \cos 2\omega t}}{2}} \right)dt + {e_1}{e_2}\left[ {\dfrac{{ - \cos 2\omega t}}{{2\omega }}} \right]_0^T} + e_2^2\int\limits_0^T {\left( {\dfrac{{1 + \cos 2\omega t}}{2}} \right)} dt} \right]
erms2=1T[e122(tsin2ωt2ω)0Te1e22ω(cos2ωTcos0)+e222(t+sin2ωt2ω)0T]e_{rms}^2 = \dfrac{1}{T}\left[ {\dfrac{{e_1^2}}{2}\left( {t - \dfrac{{\sin 2\omega t}}{{2\omega }}} \right)_0^T - \dfrac{{{e_1}{e_2}}}{{2\omega }}(\cos 2\omega T - \cos 0) + \dfrac{{e_2^2}}{2}\left( {t + \dfrac{{\sin 2\omega t}}{{2\omega }}} \right)_0^T} \right]
erms2=1T[e122[T12ω(sin2ωTsin0)]e1e22ω(cos2ωT1)+e222[T+12ω(sin2ωTsin0)]]e_{rms}^2 = \dfrac{1}{T}\left[ {\dfrac{{e_1^2}}{2}\left[ {T - \dfrac{1}{{2\omega }}\left( {\sin 2\omega T - \sin 0} \right)} \right] - \dfrac{{{e_1}{e_2}}}{{2\omega }}\left( {\cos 2\omega T - 1} \right) + \dfrac{{e_2^2}}{2}\left[ {T + \dfrac{1}{{2\omega }}\left( {\sin 2\omega T - \sin 0} \right)} \right]} \right]
T=2πω\because T = \dfrac{{2\pi }}{\omega }
erms2=1T[e122[2πω12ω(sin2ω2πω0)e1e22ω(cos2ω2πω1)+e222[2πω+12ω(sin2ω2πω)]]]e_{rms}^2 = \dfrac{1}{T}\left[ {\dfrac{{e_1^2}}{2}\left[ {\dfrac{{2\pi }}{\omega } - \dfrac{1}{{2\omega }}\left( {\sin 2\omega \dfrac{{2\pi }}{\omega } - 0} \right) - \dfrac{{{e_1}{e_2}}}{{2\omega }}\left( {\cos 2\omega \dfrac{{2\pi }}{\omega } - 1} \right) + \dfrac{{e_2^2}}{2}\left[ {\dfrac{{2\pi }}{\omega } + \dfrac{1}{{2\omega }}\left( {\sin 2\omega \dfrac{{2\pi }}{\omega }} \right)} \right]} \right]} \right]
erms2=1T[e122[2πω0]e1e22ω(11)+e222(2πω0)]e_{rms}^2 = \dfrac{1}{T}\left[ {\dfrac{{e_1^2}}{2}\left[ {\dfrac{{2\pi }}{\omega } - 0} \right] - \dfrac{{{e_1}{e_2}}}{{2\omega }}\left( {1 - 1} \right) + \dfrac{{e_2^2}}{2}\left( {\dfrac{{2\pi }}{\omega } - 0} \right)} \right]
(sinnπ=0)\left( {\sin n\pi = 0} \right) where n=0,1,2,....n = 0,1,2,....
(cos4π=1)(\cos 4\pi = 1)
erms2=ω2π[e122×2πω+e222×2πω]e_{rms}^2 = \dfrac{\omega }{{2\pi }}\left[ {\dfrac{{e_1^2}}{2} \times \dfrac{{2\pi }}{\omega } + \dfrac{{e_2^2}}{2} \times \dfrac{{2\pi }}{\omega }} \right]
erms2=e12+e222e_{rms}^2 = \dfrac{{e_1^2 + e_2^2}}{2}
erms=e12+e222\boxed{{e_{rms}} = \sqrt {\dfrac{{e_1^2 + e_2^2}}{2}} }

Hence option D is correct.

Note: We know that the mean or expectation value of sin 0 & cos 0 is 0 and sin20{\sin ^2}0 & cos20{\cos ^2}0 is 12\dfrac{1}{2}.

So, we can directly calculate the root mean square value of alternating voltage.
erms2=<(e1sinωt+e2cosωt)2>e_{rms}^2 = < {({e_1}\sin \omega t + {e_2}\cos \omega t)^2} >
=e12<sin2ωt>+2e1e2<sinωt><cosωt>+e22<cos2ωt>= e_1^2 < {\sin ^2}\omega t > + 2{e_1}{e_2} < \sin \omega t > < \cos \omega t > + e_2^2 < {\cos ^2}\omega t >
erms2=e122+0+e222e_{rms}^2 = \dfrac{{e_1^2}}{2} + 0 + \dfrac{{e_2^2}}{2}
erms2=e12+e222e_{rms}^2 = \dfrac{{e_1^2 + e_2^2}}{2}
erms=e12+e222\boxed{{e_{rms}} = \sqrt {\dfrac{{e_1^2 + e_2^2}}{2}} }