Solveeit Logo

Question

Physics Question on Alternating current

An alternating voltage e=2002sin(100t)e = 200 \sqrt{2} \, \sin(100 \, t) volt is connected to 1μF1\, \mu F capacitor through AC ammeter. The reading of ammeter is

A

5mA5\, mA

B

10mA10\, mA

C

15mA15 \,mA

D

20mA20\, mA

Answer

20mA20\, mA

Explanation

Solution

Given, e=2002sin(100t)...(i)e=200 \sqrt{2} \sin (100 t) \,\,\,\,\,\,\, ...(i)
Capacitance of capacitor (C)=1μF=1×106F(C)=1 \mu F=1 \times 10^{-6} F
The standard equation of voltage of ACAC is given by
V=V0sinωt...(ii)V=V_{0} \sin \omega t\,\,\,\,\,\,\,\,\, ...(ii)
On comparing Eqs. (i) and (ii), we get
V0=2002V_{0} =200 \sqrt{2}
ω=100\omega =100
We know that,
Irms=VrmsXCI_{ rms }=\frac{V_{ rms }}{X_{C}}
But Vrms=V02Irms=V02XC\,\,\,\,\, V_{ rms }=\frac{V_{0}}{\sqrt{2}} \,\,\,I_{ rms }=\frac{V_{0}}{\sqrt{2} X_{C}}
lms=V0ωC2(XC=1ωC)l_{ ms }=\frac{V_{0} \omega C}{\sqrt{2}} \,\,\,\,\left(\because X_{C}=\frac{1}{\omega C}\right) Ims=200×2×100×1×1062I_{ ms } =\frac{200 \times \sqrt{2} \times 100 \times 1 \times 10^{-6}}{\sqrt{2}}
Irms=20×103A=20mAI_{ rms }= 20 \times 10^{-3} A =20\, mA