Question
Physics Question on Alternating current
An alternating emf E=1102sin100tvolt is applied to a capacitor of 2μF, the rms value of current in the circuit is … mA.
Given:
C=2μF,E=1102sin(100t).
The capacitive reactance is:
XC=ωC1,
where ω=100rad/s and C=2×10−6F.
Substitute:
XC=100⋅2×10−61=2×10−41=5000Ω.
The peak current is:
i0=XCE0,
where E0=1102V.
Substitute:
i0=50001102.
The RMS value of current is:irms=2i0.
Substitute:irms=500021102=5000110.
Simplify:irms=5000110A=22mA.
Thus, the RMS value of current in the circuit is:irms=22mA.
Solution
Given:
C=2μF,E=1102sin(100t).
The capacitive reactance is:
XC=ωC1,
where ω=100rad/s and C=2×10−6F.
Substitute:
XC=100⋅2×10−61=2×10−41=5000Ω.
The peak current is:
i0=XCE0,
where E0=1102V.
Substitute:
i0=50001102.
The RMS value of current is:irms=2i0.
Substitute:irms=500021102=5000110.
Simplify:irms=5000110A=22mA.
Thus, the RMS value of current in the circuit is:irms=22mA.