Solveeit Logo

Question

Question: An alternating current is given by the equation\(i = i_{1}\cos\omega t + i_{2}\sin\omega t\). The r....

An alternating current is given by the equationi=i1cosωt+i2sinωti = i_{1}\cos\omega t + i_{2}\sin\omega t. The r.m.s. current is given by

A

12(i1+i2)\frac{1}{\sqrt{2}}(i_{1} + i_{2})

B

12(ii+i2)2\frac{1}{\sqrt{2}}(i_{i} + i_{2})^{2}

C

12(i12+i22)1/2\frac{1}{\sqrt{2}}(i_{1}^{2} + i_{2}^{2})^{1/2}

D

12(i12+i22)1/2\frac{1}{2}(i_{1}^{2} + i_{2}^{2})^{1/2}

Answer

12(i12+i22)1/2\frac{1}{\sqrt{2}}(i_{1}^{2} + i_{2}^{2})^{1/2}

Explanation

Solution

irms=i12+i222=12(i12+i22)1/2i_{rms} = \sqrt{\frac{i_{1}^{2} + i_{2}^{2}}{2}} = \frac{1}{\sqrt{2}}(i_{1}^{2} + i_{2}^{2})^{1/2}