Solveeit Logo

Question

Question: An alternating current in circuit is given by \(I=20\sin (100\pi t+0.005\pi )A.\) The r.m.s value an...

An alternating current in circuit is given by I=20sin(100πt+0.005π)A.I=20\sin (100\pi t+0.005\pi )A. The r.m.s value and the frequency of current respectively are:
A.10AA.\quad 10A and 100Hz100Hz
B.10AB.\quad 10A and 50Hz50Hz
C.102AC.\quad 10\sqrt{2}A and 50Hz50Hz
A.10AA.\quad 10A and 100Hz100Hz

Explanation

Solution

Hint: One must know, how to find the RMS value of an alternating current, that is for alternating current I=I0sinωtI={{I}_{0}}\sin \omega t the RMS value isI02.\dfrac{I_{0}^{{}}}{\sqrt{2}}.The frequency of the alternating current can be found out from the angular frequency of the alternating current, that is, ω=2πT=2πϑ.\omega =\dfrac{2\pi }{T}=2\pi \vartheta .

Step by step solution:
Let’s first start by understanding how to find out the RMS value of any function f(x). The average value of the function f(x) having time period (T) is, Average value =1T0Tf(x)dx=\dfrac{1}{T}\int\limits_{0}^{T}{f(x)dx}.
Therefore, the average value of square of f(x) is, 1T0T[f(x)]2dx\dfrac{1}{T}\int\limits_{0}^{T}{{{[f(x)]}^{2}}dx}.
Hence, the RMS value of of the function f(x) will be, RMS value =1T0Tf(x)dx=\sqrt{\dfrac{1}{T}\int\limits_{0}^{T}{f(x)dx}}.
Now, let’s consider the case for the alternating current given by I=I0sinωtI={{I}_{0}}\sin \omega t. Since, this is a sinusoidal wave equation, hence, the time period is 2π.2\pi . Hence, using these values, that is T=2π2\pi and f(x)= I=I0sinωtI={{I}_{0}}\sin \omega t. Therefore, the RMS value becomes, 12π02π(I0sinωt)2dt\sqrt{\dfrac{1}{2\pi }\int\limits_{0}^{2\pi }{{{({{I}_{0}}\sin \omega t)}^{2}}dt}}.
That is, I022π02π(sinωt)2dt\sqrt{\dfrac{I_{0}^{2}}{2\pi }\int\limits_{0}^{2\pi }{{{(\sin \omega t)}^{2}}dt}}, here we will substitute the value of sin2(ωt){{\sin }^{2}}(\omega t) as sin2(ωt)=12(1cos2ωt).{{\sin }^{2}}(\omega t)=\dfrac{1}{2}(1-\cos 2\omega t). Further, we will also take out the constant values. This makes the RMS value to be, I02π02π12(1cos2ωt)dt\dfrac{I_{0}^{{}}}{\sqrt{2\pi }}\sqrt{\int\limits_{0}^{2\pi }{\dfrac{1}{2}(1-\cos 2\omega t)dt}}. That is, I02π02π(1cos2ωt)dt\dfrac{I_{0}^{{}}}{2\sqrt{\pi }}\sqrt{\int\limits_{0}^{2\pi }{(1-\cos 2\omega t)dt}}.
We know that,ω=2πT\omega =\dfrac{2\pi }{T}. Hence the integral becomes, I02π[t]02π[sinωtω]02π=I02π[2π0][sin2πsin0ω]\dfrac{I_{0}^{{}}}{2\sqrt{\pi }}\sqrt{[t]_{0}^{2\pi }-[\dfrac{\sin \omega t}{\omega }]_{0}^{2\pi }}=\dfrac{I_{0}^{{}}}{2\sqrt{\pi }}\sqrt{[2\pi -0]-[\dfrac{\sin 2\pi -\sin 0}{\omega }]}.
Therefore, the RMS eventually becomes, I02π2π=I02.\dfrac{I_{0}^{{}}}{2\sqrt{\pi }}\sqrt{2\pi }=\dfrac{I_{0}^{{}}}{\sqrt{2}}.
From the given value of alternating current in the problem, I=20sin(100πt+0.005π)AI=20\sin (100\pi t+0.005\pi )A, we getI0=20{{I}_{0}}=20. Hence, the RMS value of the alternating current is, I02=202=102A.\dfrac{I_{0}^{{}}}{\sqrt{2}}=\dfrac{20}{\sqrt{2}}=10\sqrt{2}A.
Simultaneously, the angular frequency of the alternating current value is ω=2πT=2πϑ,\omega =\dfrac{2\pi }{T}=2\pi \vartheta ,whereϑ\vartheta is the frequency of the alternating current.
In the given problem, ω=100π\omega =100\pi . Equating it with ω=2πT=2πϑ,\omega =\dfrac{2\pi }{T}=2\pi \vartheta ,we get, ω=100π=2πϑϑ=50Hz.\omega =100\pi =2\pi \vartheta \Rightarrow \vartheta =50Hz. That is the frequency of the alternating current is 50Hz.

Note: You may think that we are always considering the value of alternating current as I=I0sinωtI={{I}_{0}}\sin \omega t for most of the equations. The reason is, that this value of I0sinωt{{I}_{0}}\sin \omega t is the only necessary part of the alternating current carrying the important information required for the calculations done above. The additional term is the phase angle.
When we consider, I1=I0sin(ωt±δ){{I}_{1}}={{I}_{0}}\sin (\omega t\pm \delta ), here (δ)(\delta ) refers to the phase angle. The phase angle is the amount or angle with which the alternating current(I1)({{I}_{1}}) will lead or lag against I=I0sinωtI={{I}_{0}}\sin \omega t.
(I1)({{I}_{1}})will be leading againstI=I0sinωtI={{I}_{0}}\sin \omega t, when the phase angle is positive. That is, I1=I0sin(ωt+δ){{I}_{1}}={{I}_{0}}\sin (\omega t+\delta ). Similarly, (I1)({{I}_{1}}) will be lagging behindI=I0sinωtI={{I}_{0}}\sin \omega t, when the phase angle is negative. That is, I1=I0sin(ωtδ){{I}_{1}}={{I}_{0}}\sin (\omega t-\delta ).