Solveeit Logo

Question

Physics Question on Alternating current

An alternating current at any instant is given by i=[6+56sin(100πt+π3)]A. i = \left[ 6 + \sqrt{56} \sin\left(100 \pi t + \frac{\pi}{3}\right) \right] \, \text{A}. The RMS value of the current is ______ A.

Answer

Understanding the RMS (Root Mean Square) Value:
The root mean square (rms) value IrmsI_{\text{rms}} of a current i=I0+I1sin(ωt+ϕ)i = I_0 + I_1 \sin(\omega t + \phi) is given by:
Irms=(I0)2+(I1)22I_{\text{rms}} = \sqrt{(I_0)^2 + \frac{(I_1)^2}{2}} where I0I_0 is the DC component and I1I_1 is the amplitude of the AC component.

Identify I0I_0 and I1I_1:
In this case:
I0=6AandI1=56AI_0 = 6 \, \text{A} \quad \text{and} \quad I_1 = \sqrt{56} \, \text{A}

Calculate the RMS Value:
Substitute I0=6I_0 = 6 and I1=56I_1 = \sqrt{56} into the rms formula:
Irms=(6)2+(56)22I_{\text{rms}} = \sqrt{(6)^2 + \frac{(\sqrt{56})^2}{2}} =36+562= \sqrt{36 + \frac{56}{2}} =36+28= \sqrt{36 + 28} =64=8A= \sqrt{64} = 8 \, \text{A}

Conclusion:
The rms value of the current is 8A8 \, \text{A}.