Solveeit Logo

Question

Question: An alloy of Pb-Ag weighing 54 mg was dissolved in desired amount of HNO3 & volume was made upto 500m...

An alloy of Pb-Ag weighing 54 mg was dissolved in desired amount of HNO3 & volume was made upto 500ml. An Ag electrode was dipped in solution and then connected to standard hydrogen electrode anode. Then calculate % of Ag in alloy.

Given : EcellE_{cell} = 0.5 V; EAg+AgE^{\circ}_{Ag^{+}|Ag} = 0.8V, 2.303RTF\frac{2.303RT}{F}=0.06

Answer

1%

Explanation

Solution

The problem involves an electrochemical cell formed by an Ag electrode and a Standard Hydrogen Electrode (SHE). We need to use the Nernst equation to determine the concentration of Ag+^+ ions in the solution, and then calculate the mass of Ag in the alloy to find its percentage.

1. Identify the Electrochemical Cell and Half-Reactions: The cell consists of a Standard Hydrogen Electrode (SHE) acting as the anode and an Ag electrode acting as the cathode.

  • Anode (Oxidation): Standard Hydrogen Electrode H2(g)2H+(aq)+2eH_2(g) \rightarrow 2H^+(aq) + 2e^- (For SHE, [H+]=1M[H^+] = 1 M and PH2=1 atmP_{H_2} = 1 \text{ atm}, EH+H2=0VE^\circ_{H^+|H_2} = 0 V)
  • Cathode (Reduction): Silver Electrode Ag+(aq)+eAg(s)Ag^+(aq) + e^- \rightarrow Ag(s) (EAg+Ag=0.8VE^\circ_{Ag^+|Ag} = 0.8 V)

2. Write the Overall Cell Reaction and Determine 'n': To balance the electrons, multiply the cathode reaction by 2: 2Ag+(aq)+2e2Ag(s)2Ag^+(aq) + 2e^- \rightarrow 2Ag(s) Now, combine the anode and cathode reactions: H2(g)+2Ag+(aq)2H+(aq)+2Ag(s)H_2(g) + 2Ag^+(aq) \rightarrow 2H^+(aq) + 2Ag(s) The number of electrons transferred in the balanced reaction, n=2n = 2.

3. Calculate the Standard Cell Potential (EcellE^\circ_{cell}): Ecell=EcathodeEanodeE^\circ_{cell} = E^\circ_{cathode} - E^\circ_{anode} Ecell=EAg+AgEH+H2=0.8V0V=0.8VE^\circ_{cell} = E^\circ_{Ag^+|Ag} - E^\circ_{H^+|H_2} = 0.8 V - 0 V = 0.8 V

4. Apply the Nernst Equation: The Nernst equation for the cell is: Ecell=Ecell2.303RTnFlogQE_{cell} = E^\circ_{cell} - \frac{2.303RT}{nF} \log Q The reaction quotient QQ for the overall reaction is: Q=[H+]2[Ag(s)]2[Ag+]2PH2Q = \frac{[H^+]^2 [Ag(s)]^2}{[Ag^+]^2 P_{H_2}} Since [H+]=1M[H^+] = 1 M and PH2=1 atmP_{H_2} = 1 \text{ atm} (for SHE), and Ag(s)Ag(s) is a pure solid (its activity is 1), the expression for QQ simplifies to: Q=1[Ag+]2Q = \frac{1}{[Ag^+]^2}

Now, substitute the given values into the Nernst equation: Ecell=0.5VE_{cell} = 0.5 V Ecell=0.8VE^\circ_{cell} = 0.8 V 2.303RTF=0.06\frac{2.303RT}{F} = 0.06 n=2n = 2

0.5=0.80.062log(1[Ag+]2)0.5 = 0.8 - \frac{0.06}{2} \log \left(\frac{1}{[Ag^+]^2}\right) 0.50.8=0.03log([Ag+]2)0.5 - 0.8 = -0.03 \log ([Ag^+]^{-2}) 0.3=0.03×(2log[Ag+])-0.3 = -0.03 \times (-2 \log [Ag^+]) 0.3=0.06log[Ag+]-0.3 = 0.06 \log [Ag^+] log[Ag+]=0.30.06\log [Ag^+] = \frac{-0.3}{0.06} log[Ag+]=5\log [Ag^+] = -5 [Ag+]=105M[Ag^+] = 10^{-5} M

5. Calculate the Moles and Mass of Ag in the Solution: The volume of the solution is 500 mL = 0.5 L. Moles of Ag+=Concentration×VolumeAg^+ = \text{Concentration} \times \text{Volume} Moles of Ag+=105 mol/L×0.5 L=0.5×105 mol=5×106 molAg^+ = 10^{-5} \text{ mol/L} \times 0.5 \text{ L} = 0.5 \times 10^{-5} \text{ mol} = 5 \times 10^{-6} \text{ mol}

The molar mass of Ag is 108 g/mol. Mass of Ag = Moles of Ag+×Molar mass of AgAg^+ \times \text{Molar mass of Ag} Mass of Ag = 5×106 mol×108 g/mol=540×106 g=0.000540 g5 \times 10^{-6} \text{ mol} \times 108 \text{ g/mol} = 540 \times 10^{-6} \text{ g} = 0.000540 \text{ g} Converting to milligrams: 0.000540 g×1000 mg/g=0.54 mg0.000540 \text{ g} \times 1000 \text{ mg/g} = 0.54 \text{ mg}

6. Calculate the Percentage of Ag in the Alloy: The total weight of the alloy is 54 mg. Percentage of Ag = Mass of AgTotal mass of alloy×100%\frac{\text{Mass of Ag}}{\text{Total mass of alloy}} \times 100\% Percentage of Ag = 0.54 mg54 mg×100%\frac{0.54 \text{ mg}}{54 \text{ mg}} \times 100\% Percentage of Ag = 0.01×100%=1%0.01 \times 100\% = 1\%

The final answer is 1%\boxed{1\%}

Explanation of the solution:

  1. Cell Setup: SHE (anode) and Ag electrode (cathode).
  2. Reactions: Anode: H22H++2eH_2 \rightarrow 2H^+ + 2e^-. Cathode: Ag++eAgAg^+ + e^- \rightarrow Ag.
  3. Overall Reaction: H2+2Ag+2H++2AgH_2 + 2Ag^+ \rightarrow 2H^+ + 2Ag. Number of electrons (nn) = 2.
  4. Standard Cell Potential: Ecell=EAg+AgEH+H2=0.8V0V=0.8VE^\circ_{cell} = E^\circ_{Ag^+|Ag} - E^\circ_{H^+|H_2} = 0.8 V - 0 V = 0.8 V.
  5. Nernst Equation: Ecell=Ecell0.06nlogQE_{cell} = E^\circ_{cell} - \frac{0.06}{n} \log Q.
  6. Reaction Quotient: Q=[H+]2[Ag+]2PH2=1[Ag+]2Q = \frac{[H^+]^2}{[Ag^+]^2 P_{H_2}} = \frac{1}{[Ag^+]^2} (for SHE).
  7. Solve for [Ag+][Ag^+]: 0.5=0.80.062log(1[Ag+]2)0.5 = 0.8 - \frac{0.06}{2} \log (\frac{1}{[Ag^+]^2}) 0.3=0.03(2log[Ag+])-0.3 = -0.03 (-2 \log [Ag^+]) log[Ag+]=5    [Ag+]=105M\log [Ag^+] = -5 \implies [Ag^+] = 10^{-5} M.
  8. Moles of Ag: Moles = Concentration ×\times Volume = 105M×0.5L=5×10610^{-5} M \times 0.5 L = 5 \times 10^{-6} mol.
  9. Mass of Ag: Mass = Moles ×\times Molar Mass = 5×1065 \times 10^{-6} mol ×108\times 108 g/mol = 0.000540.00054 g = 0.540.54 mg.
  10. Percentage of Ag: 0.54 mg54 mg×100%=1%\frac{0.54 \text{ mg}}{54 \text{ mg}} \times 100\% = 1\%.