Solveeit Logo

Question

Question: An aircraft of mass \(500 \mathrm {~m} ^ { 2 }\)in level flight at a speed of 720 \(= 10 \mathrm {~m...

An aircraft of mass 500 m2500 \mathrm {~m} ^ { 2 }in level flight at a speed of 720 =10 m s2= 10 \mathrm {~m} \mathrm {~s} ^ { - 2 })

A

0.04

B

0.08

C

0.17

D

0.34

Answer

0.17

Explanation

Solution

The weight of the aircraft is balanced by the upward force due to the pressure difference.

i.e. ΔP×A=mg\Delta \mathrm { P } \times \mathrm { A } = \mathrm { mg }

ΔP=mgA=(4×105 kg)(10 ms2)500 m2=45×104Nm2\Delta \mathrm { P } = \frac { \mathrm { mg } } { \mathrm { A } } = \frac { \left( 4 \times 10 ^ { 5 } \mathrm {~kg} \right) \left( 10 \mathrm {~ms} ^ { - 2 } \right) } { 500 \mathrm {~m} ^ { 2 } } = \frac { 4 } { 5 } \times 10 ^ { 4 } \mathrm { Nm } ^ { - 2 }

=8×103Nm2= 8 \times 10 ^ { 3 } \mathrm { Nm } ^ { - 2 }

Let P1,P2\mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } are the pressure there.

Using Bernoulli’s theorem, we get

Or

Here,

=720×518 ms1=200 ms1= 720 \times \frac { 5 } { 18 } \mathrm {~ms} ^ { - 1 } = 200 \mathrm {~ms} ^ { - 1 }

=4×1045×1.2×4×104=0.17= \frac { 4 \times 10 ^ { 4 } } { 5 \times 1.2 \times 4 \times 10 ^ { 4 } } = 0.17