Solveeit Logo

Question

Question: An air chamber of volume V has a neck of cross-sectional area *a* into which a light ball of mass m ...

An air chamber of volume V has a neck of cross-sectional area a into which a light ball of mass m just fits and can move up and down without friction. The diameter of the ball is equal a to that of the neck of the chamber. The ball is pressed down a little and released. If the bulk modulus of air is B, the time period of the oscillation of the ball is

A

T=2πBa2mV\mathrm { T } = 2 \pi \sqrt { \frac { \mathrm { Ba } ^ { 2 } } { \mathrm { mV } } }

B

T=2πBVma2\mathrm { T } = 2 \pi \sqrt { \frac { \mathrm { BV } } { \mathrm { ma } ^ { 2 } } }

C

T=2πmBVa2\mathrm { T } = 2 \pi \sqrt { \frac { \mathrm { mB } } { \mathrm { Va } ^ { 2 } } }

D

T=2πmVBa2\mathrm { T } = 2 \pi \sqrt { \frac { \mathrm { mV } } { \mathrm { Ba } ^ { 2 } } }

Answer

T=2πmVBa2\mathrm { T } = 2 \pi \sqrt { \frac { \mathrm { mV } } { \mathrm { Ba } ^ { 2 } } }

Explanation

Solution

The situation is as shown in the figure. Let P be pressure of air in the chamber. When the ball is presses down a distance x, the volume of air decrease from V to say V Δ\DeltaP the change in volume is

The excess pressure ΔP\Delta \mathrm { P } is related to the bulk modulus B as

ΔP=BΔVV\Delta \mathrm { P } = - \mathrm { B } \frac { \Delta \mathrm { V } } { \mathrm { V } }

Restoring force on ball = excess pressure × cross sectional area

Or

Or F=Ba2 Vx(ΔV=ax)\mathrm { F } = - \frac { \mathrm { Ba } ^ { 2 } } { \mathrm {~V} } \mathrm { x } \quad ( \because \Delta \mathrm { V } = \mathrm { ax } )

Or F=kx\mathrm { F } = - \mathrm { kx }

Where k=Ba2 V\mathrm { k } = \frac { \mathrm { Ba } ^ { 2 } } { \mathrm {~V} }

i.e. FxF \propto - x

hence the motion of the ball is simple harmonic if m is the ball the time period of the SHM is

T=2π mk\mathrm { T } = 2 \pi \sqrt { \frac { \mathrm {~m} } { \mathrm { k } } } or T=2πmVBa2\mathrm { T } = 2 \pi \sqrt { \frac { \mathrm { mV } } { \mathrm { Ba } ^ { 2 } } }