Solveeit Logo

Question

Question: An air bubble of volume 1.0 cm3 rises from the bottom of a lake 40 m deep at a temperature of 12°C. ...

An air bubble of volume 1.0 cm3 rises from the bottom of a lake 40 m deep at a temperature of 12°C. To what volume does it grow when it reaches the surface, which is of a temperature of 35°C?

A

10.6 × 10–6 m3

B

5.3 × 10–6 m3

C

2.8 × 10–6 m3

D

15.6 × 10–6 m3

Answer

5.3 × 10–6 m3

Explanation

Solution

Using , P1=P2+ρghP_{1} = P_{2} + \rho gh

Here, P2=1.013×105atm,h=40mP_{2} = 1.013 \times 10^{5}atm,h = 40m

ρ=103kgm3\rho = 10^{3}kgm^{- 3} (density of water), g=9.8ms2g = 9.8ms^{- 2}

P1=1.013×105+103×9.8×40\therefore P_{1} = 1.013 \times 10^{5} + 10^{3} \times 9.8 \times 40

=493300Pa= 493300Pa

Now, P1V1T1=P2V2T2\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}

Here, T1=(12+273)=285K,T2=(35+273)=308KT_{1} = (12 + 273) = 285K,T_{2} = (35 + 273) = 308K

V1=1×106m3V_{1} = 1 \times 10^{- 6}m^{3}

V2V_{2}is the volume of the air bubble when it reaches the surface

V2=P1V1T2T1P2=(493300×1×106)285×1.013×105×308\therefore V_{2} = \frac{P_{1}V_{1}T_{2}}{T_{1}P_{2}} = \frac{(493300 \times 1 \times 10^{- 6})}{285 \times 1.013 \times 10^{5}} \times 308

=5.26×106m3=5.3×106m3= 5.26 \times 10^{- 6}m^{3} = 5.3 \times 10^{- 6}m^{3}