Solveeit Logo

Question

Question: An acid type indicator, \(\text{ HIn }\), differs in colour from its conjugate base \(\text{I}{{\tex...

An acid type indicator,  HIn \text{ HIn }, differs in colour from its conjugate base In\text{I}{{\text{n}}^{-}}. The human eye is sensitive to colour differences only when the ratio  [In][HIn] \text{ }\dfrac{\left[ \text{I}{{\text{n}}^{-}} \right]}{\left[ \text{HIn} \right]}\text{ } is greater than 10 or smaller than  0.1 \text{ 0}\text{.1 }. What should be the minimum change in  pH \text{ pH } of solution to observe a complete colour change? ( Ka = 10-5 \text{ Ka = 1}{{\text{0}}^{\text{-5}}}\text{ })

Explanation

Solution

The indicators are used to detect the change in the  pH \text{ pH }of the solution. These have a very wide application in acid-base titration reaction. The acid indicators are expressed as  HIn \text{ HIn }dissociates into the In\text{I}{{\text{n}}^{-}}. The range of the  pH \text{ pH } in which the complete change in the colour of the indicator can be observed is determined by the Henderson –Hasselbach equation. For Indicator,  HIn \text{ HIn }the equation is given as,
 pH = pKIn + log [In][HIn]\text{ pH = p}{{\text{K}}_{\text{In}}}\text{ + log }\dfrac{\left[ \text{I}{{\text{n}}^{-}} \right]}{\left[ \text{HIn} \right]}
Where,  [In][HIn] \text{ }\dfrac{\left[ \text{I}{{\text{n}}^{-}} \right]}{\left[ \text{HIn} \right]}\text{ } is the ratio of the concentration of dissociated to undissociated form and KIn{{\text{K}}_{\text{In}}} is the dissociation constant of the indicator.

Complete step by step answer:
Ostwald developed a theory of acid-base indicators which offers a simple explanation for the colour change with the variation of  pH \text{ pH }. According to this theory, hydrogen ion indicators are either weak organic acid or base. The undissociated, molecules have one colour and the ion furnished by it, on dissociation has another the colour.
Let the indicator be the acid of the formula  HIn \text{ HIn }. Then, its dissociation in solution may be represented as,
 HInH+\+In Colour AColour B  \text{ }\begin{matrix} \text{HIn} & \rightleftharpoons & {{\text{H}}^{+}} & \+ & \text{I}{{\text{n}}^{-}} \\\ \text{Colour A} & {} & {} & {} & \text{Colour B} \\\ \end{matrix}\text{ }
The undissociated molecule  HIn \text{ HIn } has one colour say colour A and the dissociated ion In\text{I}{{\text{n}}^{-}} have colour B.
The equilibrium constant for the indicator may be written as,
 KIn = [H+][In][HIn] \text{ }{{\text{K}}_{\text{In}}}\text{ = }\dfrac{\left[ {{\text{H}}^{\text{+}}} \right]\left[ \text{I}{{\text{n}}^{-}} \right]}{\left[ \text{HIn} \right]}\text{ }
We have to find the  pH \text{ pH } change associated with the indicator when the ratio  [In][HIn] \text{ }\dfrac{\left[ \text{I}{{\text{n}}^{-}} \right]}{\left[ \text{HIn} \right]}\text{ } is varied.
Case a) when the ratio is  [In][HIn] = 10 \text{ }\dfrac{\left[ \text{I}{{\text{n}}^{-}} \right]}{\left[ \text{HIn} \right]}\text{ = 10 }
Applying the Henderson –Hasselbach equation the  p1\text{ }{{\text{p}}_{\text{1}}}\text{H } of the indicator is calculated as follows,
 p1H = pKIn + log [In][HIn] KIn=1×105  p1= 5 + log 10  p1= 5 + 1 \begin{aligned} & \text{ }{{\text{p}}_{\text{1}}}\text{H = p}{{\text{K}}_{\text{In}}}\text{ + log }\dfrac{\left[ \text{I}{{\text{n}}^{-}} \right]}{\left[ \text{HIn} \right]}\text{ }\because {{\text{K}}_{\text{In}}}=1\times {{10}^{-5}}\text{ } \\\ & \Rightarrow {{\text{p}}_{\text{1}}}\text{H }=\text{ 5 + log 10 } \\\ & \therefore {{\text{p}}_{\text{1}}}\text{H }=\text{ 5 + 1} \\\ \end{aligned}
Case b) when the ratio is  [In][HIn] = 0.1 \text{ }\dfrac{\left[ \text{I}{{\text{n}}^{-}} \right]}{\left[ \text{HIn} \right]}\text{ = 0}\text{.1 }
Applying the Henderson –Hasselbach equation the  p2\text{ }{{\text{p}}_{2}}\text{H } of the indicator is calculated as follows,
 p2H = pKIn + log [In][HIn] KIn=1×105  p1= 5 + log 0.1  p1= 5  1 \begin{aligned} & \text{ }{{\text{p}}_{2}}\text{H = p}{{\text{K}}_{\text{In}}}\text{ + log }\dfrac{\left[ \text{I}{{\text{n}}^{-}} \right]}{\left[ \text{HIn} \right]}\text{ }\because {{\text{K}}_{\text{In}}}=1\times {{10}^{-5}}\text{ } \\\ & \Rightarrow {{\text{p}}_{\text{1}}}\text{H }=\text{ 5 + log 0}\text{.1 } \\\ & \therefore {{\text{p}}_{\text{1}}}\text{H }=\text{ 5 }-\text{ 1} \\\ \end{aligned}
If we observe the case a) and case b), we see that the change in the  pH \text{ pH }is equal to the  +1 \text{ +1 } or  1 \text{ }-1\text{ } to that of the  pKIn \text{ p}{{\text{K}}_{\text{In}}}\text{ } value. That is,
 pH change = ± 1 \text{ pH change = }\pm \text{ 1 }

Therefore, the minimum change in  pH \text{ pH } of the indicator should be in the range of ± 1 \pm \text{ 1 } to the  pKIn \text{ p}{{\text{K}}_{\text{In}}}\text{ } value of the indicator to observe the visible and colour change.

Note: One of the most common acid-base indicators is phenolphthalein. It is a weak acid. In acidic medium i.e.  pH <\text{ pH }<\text{7 }, it is predominately in undissociated form. Thus colourless In basic medium i.e.  pH >\text{ pH }>\text{7 }, it loses its proton and exists in an undissociated form (anion). Due to extended conjugation, in the basic medium, it is pink in colour. Thus phenolphthalein is used for the acid-base titration reaction to determine the end point.