Solveeit Logo

Question

Question: An ac source producing emf \( \text{e}={{\text{E}}_{0}}\left[ \cos \left( 100\text{ }\\!\\!\pi\\!\\!...

An ac source producing emf e=E0[cos(100 !!π!! t)+cos(500 !!π!! t)]\text{e}={{\text{E}}_{0}}\left[ \cos \left( 100\text{ }\\!\\!\pi\\!\\!\text{ t} \right)+\cos \left( 500\text{ }\\!\\!\pi\\!\\!\text{ t} \right) \right] is connected in series with a capacitor and a resistor. The steady state current in the circuit is found to be i=I1cos(100 !!π!! t+ !!θ!! 1)+I2cos(500 !!π!! t+ !!θ!! 2)\text{i}={{\text{I}}_{1}}\cos \left( 100\text{ }\\!\\!\pi\\!\\!\text{ t}+{{\text{ }\\!\\!\theta\\!\\!\text{ }}_{1}} \right)+{{\text{I}}_{2}}\cos \left( 500\text{ }\\!\\!\pi\\!\\!\text{ t}+\text{ }\\!\\!\theta\\!\\!\text{ 2} \right)
(A) I1>I2{{\text{I}}_{1}}>{{\text{I}}_{2}}
(B) I1=I2{{\text{I}}_{1}}\text{=}{{\text{I}}_{2}}
(C) I1I2{{\text{I}}_{1}}\text{}{{\text{I}}_{2}}
(D) Nothing can be said

Explanation

Solution

A capacitor is a passive device that stores energy in its electric field and returns energy to the circuit whenever required capacitors do not store Ac voltage
Charge on capacitor is Q=CV
and current i=dQdt\text{i}=\dfrac{\text{dQ}}{\text{dt}}

Complete step by step solution
We can assume two different sources connected in series with same orientation
E1=E0cos 100 !!π!! t E2=E0cos 500 !!π!! t \begin{aligned} & {{\text{E}}_{1}}={{\text{E}}_{\text{0}}}\cos \text{ 100 }\\!\\!\pi\\!\\!\text{ t} \\\ & {{\text{E}}_{2}}={{\text{E}}_{\text{0}}}\cos \text{ 500 }\\!\\!\pi\\!\\!\text{ t} \\\ \end{aligned}
Such that
e=E0cos 100 !!π!! t+E0cos 500 !!π!! t  =E0[cos 100 !!π!! t+cos 500 !!π!! t] \begin{aligned} & \text{e}={{\text{E}}_{\text{0}}}\cos \text{ 100 }\\!\\!\pi\\!\\!\text{ t}+{{\text{E}}_{\text{0}}}\cos \text{ 500 }\\!\\!\pi\\!\\!\text{ t} \\\ & \text{ =}{{\text{E}}_{0}}\left[ \cos \text{ 100 }\\!\\!\pi\\!\\!\text{ t}+\cos \text{ 500 }\\!\\!\pi\\!\\!\text{ t} \right] \\\ \end{aligned}
Becomes,
e=E1+E2\text{e}={{\text{E}}_{1}}+{{\text{E}}_{2}}
The charge on the capacitor during the steady state is given by
Q=CE
Putting the value of E in this equation
Q=E0[cos 100 !!π!! t+cos 500 !!π!! t]\text{Q}=\text{C }{{\text{E}}_{0}}\left[ \cos \text{ 100 }\\!\\!\pi\\!\\!\text{ t}+\cos \text{ 500 }\\!\\!\pi\\!\\!\text{ t} \right]
The steady state current is, thus given by
i=dQdt i=ddt[E0[cos 100 !!π!! t+cos 500 !!π!! t]] i=ddt(E0cos 100 !!π!! t)+ddt(E0cos 500 !!π!! t) E0(100 !!π!! ) sin100 !!π!! t+E0(500 !!π!! ) sin500 !!π!! t  [ddtcos t=sin t] \begin{aligned} & \text{i}=\dfrac{\text{dQ}}{\text{dt}} \\\ & \text{i}=\dfrac{\text{d}}{\text{dt}}\left[ \text{C }{{\text{E}}_{0}}\left[ \cos \text{ 100 }\\!\\!\pi\\!\\!\text{ t}+\cos \text{ 500 }\\!\\!\pi\\!\\!\text{ t} \right] \right] \\\ & \text{i}=\dfrac{\text{d}}{\text{dt}}\left( \text{C }{{\text{E}}_{0}}\cos \text{ 100 }\\!\\!\pi\\!\\!\text{ t} \right)+\dfrac{\text{d}}{\text{dt}}\left( \text{C }{{\text{E}}_{0}}\cos \text{ 500 }\\!\\!\pi\\!\\!\text{ t} \right) \\\ & \text{C }{{\text{E}}_{0}}\left( 100\text{ }\\!\\!\pi\\!\\!\text{ } \right)\text{ sin100 }\\!\\!\pi\\!\\!\text{ t}+\text{C }{{\text{E}}_{0}}\left( 500\text{ }\\!\\!\pi\\!\\!\text{ } \right)\text{ sin500 }\\!\\!\pi\\!\\!\text{ t} \\\ & \text{ }\left[ \because \dfrac{\text{d}}{\text{dt}}\cos \text{ t}=\sin \text{ t} \right] \\\ \end{aligned}
i1 sin 100 !!π!! t+i2 sin 500 !!π!! t{{\text{i}}_{1}}\text{ sin 100 }\\!\\!\pi\\!\\!\text{ t}+{{\text{i}}_{2}}\text{ sin 500 }\\!\\!\pi\\!\\!\text{ t}
Where i1=E0(100 !!π!! t) {{\text{i}}_{1}}=\text{C }{{\text{E}}_{0}}\left( \text{100 }\\!\\!\pi\\!\\!\text{ t} \right)\text{ }
i2=E0(500 !!π!! t) {{\text{i}}_{2}}=\text{C }{{\text{E}}_{0}}\left( \text{500 }\\!\\!\pi\\!\\!\text{ t} \right)\text{ }
Now, using the principle of superposition
We get,
i=i1cos (100 !!π!! t+ !!θ!! 1)+i2cos (500 !!π!! t+ !!θ!! 2) \text{i}={{\text{i}}_{1}}\cos \text{ }\left( \text{100 }\\!\\!\pi\\!\\!\text{ t}+{{\text{ }\\!\\!\theta\\!\\!\text{ }}_{1}} \right)+{{\text{i}}_{2}}\cos \text{ }\left( \text{500 }\\!\\!\pi\\!\\!\text{ t}+{{\text{ }\\!\\!\theta\\!\\!\text{ }}_{2}} \right)\text{ }
From this expression, we get
i1=E0100 !!π!! C i2=E0500 !!π!! C \begin{aligned} & {{\text{i}}_{1}}={{\text{E}}_{0}}\text{100 }\\!\\!\pi\\!\\!\text{ C} \\\ & {{\text{i}}_{2}}={{\text{E}}_{0}}\text{500 }\\!\\!\pi\\!\\!\text{ C} \\\ \end{aligned}
From this we can easily predict that
i2>i1{{\text{i}}_{2}}>{{\text{i}}_{1}}
Therefore option (C) is correct.

Note
Capacitor and battery are different devices because the potential energy in a capacitor is stored in an electric field, where a battery stores its potential energy in a chemical form. Knowledge of some trigonometric rules and differentiation rule should be must be careful while solving the differentiation because students get confused easily