Solveeit Logo

Question

Physics Question on Alternating current

An ac source of angular frequency ω\omega is fed across a resistor R and a capacitor C in series. The current registered is I. If now the frequency of source is changed to ω/3\omega/3 (but maintaining the same voltage), the current in the circuit is found to be halved. Calculate the ratio of reactance to resistance at the original frequency ω\omega

A

35 \sqrt{ \frac{ 3}{ 5}}

B

25 \sqrt{ \frac{ 2}{ 5}}

C

15 \sqrt{ \frac{ 1}{ 5}}

D

45 \sqrt{ \frac{ 4}{ 5}}

Answer

35 \sqrt{ \frac{ 3}{ 5}}

Explanation

Solution

At angular frequency ω\omega, the current in R-C circuit is given by Irms=VrmsR2+(1ωC)2I_{ rms} = \frac{ V_{ rms}}{ \sqrt{ R^2 + \bigg( \frac{ 1}{ \omega C}\bigg)^2 }} ..( i ) Also, Irms2=VrmsR2+[1ωC3]2=VrmsR2+9ω2C2 \frac{ I_{ rms}}{ 2} = \frac{ V_{ rms}}{ \sqrt{ R^2 + \Bigg [ \frac{ \frac{1}{ \omega C}}{ 3}\Bigg]^2 }} = \frac{ V_{ rms}}{ \sqrt{ R^2 + \frac{ 9}{ \omega^2 C^2 }} } ...(ii) From Eqs. (i) and (ii), we get 3R2=3ω2C2 3R^2 = \frac{ 3}{ \omega^2 C^2 } 1ωCR=35\Rightarrow \frac{ 1}{ \frac{\omega C}{R}} = \sqrt{ \frac{ 3}{ 5 }} XCR=35\Rightarrow \frac{ X_C}{ R} = \sqrt{ \frac{ 3}{ 5 }}