Solveeit Logo

Question

Physics Question on LCR Circuit

An ac source is connected in given series LCR circuit. The rms potential difference across the capacitor of 20 μF is .............. V.
Circuit

Answer

The inductive reactance is:

XL=ωL=100×1=100Ω.X_L = \omega L = 100 \times 1 = 100 \, \Omega.

The capacitive reactance is:

XC=1ωC=1100×20×106=500Ω.X_C = \frac{1}{\omega C} = \frac{1}{100 \times 20 \times 10^{-6}} = 500 \, \Omega.

The total impedance is:

Z=(XLXC)2+R2=(100500)2+3002.Z = \sqrt{(X_L - X_C)^2 + R^2} = \sqrt{(100 - 500)^2 + 300^2}.

Simplifying:

Z=(400)2+3002=160000+90000=500Ω.Z = \sqrt{(-400)^2 + 300^2} = \sqrt{160000 + 90000} = 500 \, \Omega.

The rms current is:

irms=VrmsZ=50500=0.1A.i_{\text{rms}} = \frac{V_{\text{rms}}}{Z} = \frac{50}{500} = 0.1 \, \text{A}.

The rms voltage across the capacitor is:
Vrms, capacitor=XCirms=500×0.1=50V.V_{\text{rms, capacitor}} = X_C \cdot i_{\text{rms}} = 500 \times 0.1 = 50 \, \text{V}.